Cardioprotective antihyperglycemic drugs ameliorate endoplasmic reticulum stress.

Am J Physiol Cell Physiol

Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, Jacksonville, Florida, United States.

Published: January 2024

Cellular stress, notably oxidative, inflammatory, and endoplasmic reticulum (ER) stress, is implicated in the pathogenesis of cardiovascular disease. Modifiable risk factors for cardiovascular disease such as diabetes, hypercholesterolemia, saturated fat consumption, hypertension, and cigarette smoking cause ER stress whereas currently known cardioprotective drugs with diverse pharmacodynamics share a common pleiotropic effect of reducing ER stress. Selective targeting of oxidative stress with known antioxidative vitamins has been ineffective in reducing cardiovascular risk. This "antioxidant paradox" is partially attributed to the unexpected aggravation of ER stress by the antioxidative agents used. In contrast, some of the contemporary antihyperglycemic drugs inhibit both oxidative stress and ER stress in human coronary artery endothelial cells. Unlike sulfonylureas, meglitinides, α glucosidase inhibitors, and thiazolidinediones, metformin, glucagon-like peptide 1 receptor agonists, and sodium-glucose cotransporter 2 inhibitors are the only antihyperglycemic drugs that reduce ER stress caused by pharmacological agents (tunicamycin) or hyperglycemic conditions. Clinical trials with selective ER stress modifiers are needed to test the suitability of ER stress as a therapeutic target for cardiovascular disease.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.00470.2023DOI Listing

Publication Analysis

Top Keywords

antihyperglycemic drugs
12
stress
12
cardiovascular disease
12
endoplasmic reticulum
8
reticulum stress
8
oxidative stress
8
stress antioxidative
8
cardioprotective antihyperglycemic
4
drugs
4
drugs ameliorate
4

Similar Publications

Ethnomedicine exhibits potential in developing affordable effective antidiabetic agents. This work aimed to explore the antidiabetic properties of latex extract both in vivo, utilizing alloxan-induced diabetic rats, and in vitro, through -amylase enzyme testing. Additionally, it sought to formulate optimal effervescent granules derived from the extract.

View Article and Find Full Text PDF

The development of a real-time system for characterizing individual biomolecule-containing aerosol particles presents a transformative opportunity to monitor respiratory conditions, including infections and lung diseases. Existing molecular assay technologies, although effective, rely on costly reagents, are relatively slow, and face challenges in multiplexing, limiting their use for real-time applications. To overcome these challenges, we developed digitalMALDI, a laser-based mass spectrometry system designed for single-particle characterization.

View Article and Find Full Text PDF

SGLT2 inhibitors have emerged as a remarkable class of drugs, revolutionizing the management of various medical conditions beyond their initial purpose of controlling diabetes. With their proven benefits in cardiovascular health, kidney disease, hypertension, and even potential applications in cancer treatment, SGLT2 inhibitors have broadened their scope. While concerns about adverse effects and contraindications exist, these medications hold great promise for a diverse range of patients.

View Article and Find Full Text PDF

The most common type of liver cancer is hepatocellular carcinoma (HCC), accounting for 75-85% of cases. Despite its associated side effects, sorafenib remains the standard treatment for HCC. Given the critical need to improve therapeutic efficacy while minimizing adverse effects, alternative drugs must be thoroughly investigated.

View Article and Find Full Text PDF

Nanotechnology has experienced significant advancements, attracting considerable attention in various biomedical applications. This innovative study synthesizes and characterizes Ge/PLA/AuNCs (gelatin/PLA/gold nanocomposites) using Syzygium cumini extract to evaluate their various biomedical applications. The UV-Visible spectroscopy results in an absorption peak at 534 nm were primarily confirmed by Ge/PLA/AuNCs synthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!