Targeted drug delivery to endothelial cells utilizing functionalized nanocarriers (NCs) is an essential procedure in therapeutic and diagnosis therapies. Using dissipative particle dynamics simulation, NCs have been designed and combined with an endothelial environment, such as the endothelial glycocalyx (EG) layer, receptors, water, and cell wall. Furthermore, the energy landscapes of the functionalized NC with the endothelial cell have been analyzed as a function of properties such as the shape, size, initial orientation, and ligand density of NCs. Our results show that an appropriate higher ligand density for each particular NC provides more driving forces than barriers for the penetration of the NCs. Herein we report the importance of shell entropy loss for the NC shape effect on the adhesion and penetration into the EG layer. Moreover, the rotation of the disc shape NC as a wheel during the penetration is an extra driving force for its further inclusion. By increasing the NCs' size larger than the appropriate size for each particular ligand density, due to an increase in the NCs' shell entropy loss, the barriers surpass the driving forces for NC penetration. Furthermore, the parallel orientation provides the NCs with the best penetration capabilities. However, the rotation of the disc shape NCs enhances their diffusion in the perpendicular orientation too. Overall, our findings highlight the crucial role of the shell entropy loss in governing the penetration of NCs. Besides, studying NCs with a homogeneous ligand composition enabled us to cross barriers and probe energetics after the complete inclusion of the NCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3sm00865g | DOI Listing |
J Mol Graph Model
January 2025
"VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, 11001, Belgrade, Serbia.
Technetium-99m plays a pivotal role in nuclear medicine, offering unique IMAGING capabilities due to its favorable physical and chemical properties. This study investigates the redox behavior and electronic structures of three representative Tc(V) oxo complexes, [TcO(HMPAO)], [TcO(Bicisate)], and [TcO(DMSA)], using computational techniques. Employing relativistic density functional theory with the Zero-Order Regular Approximation (ZORA), we analyze singlet-triplet energy gaps, Gibbs free energy changes, and redox potentials in neutral and acidic environments.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
Molecular docking is a crucial technique for elucidating protein-ligand interactions. Machine learning-based docking methods offer promising advantages over traditional approaches, with significant potential for further development. However, many current machine learning-based methods face challenges in ensuring the physical plausibility of generated docking poses.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Liver fibrosis is a persistent damage repair response triggered by various etiological factors, resulting in an excessive accumulation of extracellular matrix (ECM). Activated hepatic stellate cells (HpSCs) are the primary source of ECM proteins. Therefore, specifically targeting HpSCs has become a crucial approach for treating liver fibrosis.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea.
Solid polymer electrolytes (SPEs) for symmetrical supercapacitors are proposed herein with activated carbon as electrodes and optimized solid polymer electrolyte membranes, which serve as the separators and electrolytes. We propose the design of a low-cost solid polymer electrolyte consisting of guanidinium nitrate (GuN) and poly(ethylene oxide) (PEO) with poly(vinylpyrrolidone) (PVP). Using the solution casting approach, blended polymer electrolytes with varying GuN weight percentage ratios of PVP and PEO are prepared.
View Article and Find Full Text PDFBMC Biotechnol
January 2025
Department of Emergency Medicine, Inner Mongolia People's Hospital, No. 20 Zhaowuda Road, Hohhot City, Inner Mongolia Autonomous Region, 010017, China.
Background: Oxidized low-density lipoprotein (ox-LDL)-induced endothelial cell dysfunction plays a crucial role in the progression of atherosclerosis (AS). Although miR-125b-5p is known to be involved in cardiovascular and cerebrovascular disorders, its function in ox-LDL-induced endothelial injury is still not well understood.
Methods: An in vitro AS cell model was established by exposing human umbilical vein endothelial cells (HUVECs) to 100 µg/mL ox-LDL for 24 h.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!