The study aimed to prepare and characterize biodegradable sustained-release beads of letrozole (LTZ) for treating cancerous disease. The ionotropic gelation method was used for the preparation and calcium chloride (CaCl) was used as a gelating agent, while chitosan (CTS) and sodium alginate (NaAlg) as biodegradable polymeric matrices in the blend hydrogel beads. The beads were characterized for their size, surface morphology, drug entrapment efficiency, drug-polymer interaction and crystallinity using different analytic techniques, including optical microscopy, Scanning Electron Microscopy (SEM), UV-spectroscopy, Fourier-transform Infrared Spectroscopy (FTIR), Thermo gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and X-ray Diffraction Analysis (XRD) respectively. In vitro swelling studies were also applied to observe the response of these polymeric networks against different pH (at 1.2, 6.8 and 7.4 pH). The results from TGA and DSC exhibited that the components in the formulation possess better thermal stability. The XRD of polymeric networks displays a minor crystalline and significant amorphous nature. The SEM micrographs revealed that polymeric networks have uneven surfaces and grooves. Better swelling and in vitro outcomes were achieved at a high pH (6.8,7.4), which endorsed the pH-responsive characteristics of the prepared beads. Hence, beads based on chitosan and sodium alginate were successfully synthesized and can be used for the controlled release of letrozole.

Download full-text PDF

Source

Publication Analysis

Top Keywords

polymeric networks
12
sodium alginate
8
beads beads
8
beads
6
polymeric
5
development characterization
4
characterization letrozole-encapsulated
4
letrozole-encapsulated polymeric
4
polymeric beads
4
beads sustained
4

Similar Publications

Leptospirosis is a zoonotic disease caused by bacteria, affecting humans and a broad range of wild and domestic animals in diverse epidemiological settings (rural, urban, and wild). The disease's pathogenesis and epidemiology are complex networks not fully elucidated. Epidemiology reflects the One Health integrated approach of environment-animal-human interaction, causing severe illness in humans and animals, with consequent public health burdens.

View Article and Find Full Text PDF

Response of Differently Structured Dental Polymer-Based Composites to Increasingly Aggressive Aging Conditions.

Nanomaterials (Basel)

January 2025

Department of Conservative Dentistry, University Hospital, Ludwig-Maximilians-University, Goethestr. 70, D-80336 Munich, Germany.

Objective: It is hypothesized that the way nano- and micro-hybrid polymer-based composites are structured and cured impacts the way they respond to aging.

Material And Methods: A polymer-ceramic interpenetrating network composite (Vita Enamic/VE), an industrially polymerized (Brillinat CriosST/BC), and an in situ light-cured composite with discrete inorganic fillers (Admira Fusion5/AF5) were selected. Specimens (308) were either cut from CAD/CAM blocks (VE/BC) or condensed and cured in white polyoxymethylene molds (AF5) and subjected to four different aging conditions ( = 22): (a) 24 h storage in distilled water at 37 °C; (b) 24 h storage in distilled water at 37 °C followed by thermal cycling for 10,000 cycles 5/55 °C (TC); (c) TC followed by storage in a 75% ethanol-water solution; and (d) TC followed by a 3-week demineralization/remineralization cycling.

View Article and Find Full Text PDF

Understanding the interplay between the molecular structure of the ionic liquid (IL) subunit, the resulting nanostructure and ion transport in polymerized ionic liquids (PILs) is necessary for the realization of high-performance solid-state electrolytes required in various advanced applications. Herein, we present a detailed structural characterization of a recently synthesized series of acrylate-based PIL homopolymers and networks with imidazolium cations and chloride anions with varying alkyl spacer and terminal group lengths designed for organic solid-state batteries based on X-ray scattering. The impact of the concentrations of both the crosslinker and added tetrabutylammonium chloride (TBACl) conducting salt on the structural characteristics is also investigated.

View Article and Find Full Text PDF

Conductive eutectogels have emerged as candidates for constructing functional flexible electronics as they are free from the constraints posed by inherent defects associated with solvents and feeble network structures. Nevertheless, developing a facile, environmentally friendly, and rapid polymerization strategy for the construction of conductive eutectogels with integrated multifunctionality is still immensely challenging. Herein, a conductive eutectogel is fabricated through a one-step dialdehyde xylan (DAX)/liquid metal (LM)-initiated polymerization of a deep eutectic solvent.

View Article and Find Full Text PDF

Cryogels were fabricated by combining polyvinyl alcohol (PVA) and chitosan of varying molecular weights (Mw). In this study, the effects of chitosan Mw, types of boron-containing molecules on network formation, and boron release rate in resulted cryogels were investigated. The PVA/chitosan blend maintained a constant 4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!