A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identifying phenotype-associated subpopulations through LP_SGL. | LitMetric

Identifying phenotype-associated subpopulations through LP_SGL.

Brief Bioinform

School of Computer Science and Engneering, Beihang University, 37 Xueyuan Road, Haidian District, 100191, Beijing, China.

Published: November 2023

Single-cell RNA sequencing (scRNA-seq) enables the resolution of cellular heterogeneity in diseases and facilitates the identification of novel cell types and subtypes. However, the grouping effects caused by cell-cell interactions are often overlooked in the development of tools for identifying subpopulations. We proposed LP_SGL which incorporates cell group structure to identify phenotype-associated subpopulations by integrating scRNA-seq, bulk expression and bulk phenotype data. Cell groups from scRNA-seq data were obtained by the Leiden algorithm, which facilitates the identification of subpopulations and improves model robustness. LP_SGL identified a higher percentage of cancer cells, T cells and tumor-associated cells than Scissor and scAB on lung adenocarcinoma diagnosis, melanoma drug response and liver cancer survival datasets, respectively. Biological analysis on three original datasets and four independent external validation sets demonstrated that the signaling genes of this cell subset can predict cancer, immunotherapy and survival.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10753413PMC
http://dx.doi.org/10.1093/bib/bbad424DOI Listing

Publication Analysis

Top Keywords

phenotype-associated subpopulations
8
facilitates identification
8
identifying phenotype-associated
4
subpopulations
4
subpopulations lp_sgl
4
lp_sgl single-cell
4
single-cell rna
4
rna sequencing
4
sequencing scrna-seq
4
scrna-seq enables
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!