In the pejerrey Odontesthes bonariensis (Atheriniformes, Atherinopsidae), exposure to high and low temperatures during the critical period of sex determination (CPSD) induce testicular and ovarian differentiation, respectively, regardless of the presence or not of the sex determining gene amhy, which is crucial for testis formation only at intermediate, sexually neutral temperatures. In this study we explored the existence of genotype-specific signaling of Crh (Corticotropin Releasing Hormone) family genes and their associated carrier protein, receptors, and other stress-related genes in response to temperature during the CPSD and the potential involvement of the central nervous system via the hypothalamus-pituitary-interrenal (HPI) axis in the sex determination of this species. The Crh family genes crhb, uts1, ucn3, the receptor crhr1 and the stress-related genes gr1, gr2, nr3c2 were transiently upregulated in the heads of pejerrey larvae during the CPSD by high temperature alone or in combination with other factors. Only crhr2 transcript abundance was not influenced by temperature but independently by time and genotype. In most cases, mRNA abundance was higher in the XX heads compared to that of XY individuals. The mRNAs of some of these genes were localized in the hypothalamus of pejerrey larvae during the CPSD. XX larvae also showed higher whole-body cortisol titers than the XY, downregulation of cyp19a1a and upregulation of the testis-related genes amhy/amha in trunks (gonads) and were 100% masculinized at the high temperature. In contrast, at the low temperature, crhbp and avt were upregulated in the heads, particularly the former in XY larvae. cyp19a1a and amhy/amha were up- and downregulated, respectively, in the gonads, and fish were 100% feminized. Signaling via the HPI axis was observed simultaneously with the first molecular signs of ongoing sex determination/differentiation in the gonads. Overall, the results strongly suggest a temperature-dependent, genotype-specific regulatory action of the brain involving the Crh family of stress-related genes on the process of environmental sex determination of pejerrey.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mce.2023.112114DOI Listing

Publication Analysis

Top Keywords

sex determination
16
stress-related genes
12
pejerrey odontesthes
8
odontesthes bonariensis
8
environmental sex
8
determination pejerrey
8
family genes
8
hpi axis
8
crh family
8
upregulated heads
8

Similar Publications

This systematic review and meta-analysis aimed to assess the accuracy and success rate of ultrasound in determining fetal sex. A search was conducted on Medline, Cochrane Library, and EMBASE databases, and the reference lists of selected studies were also reviewed. Meta-analyses were performed using Revman 5.

View Article and Find Full Text PDF

Introduction: Vaccine mandates have been used to minimize the duty days lost and deaths attributable to infectious disease among active duty Service members (ADSMs). In response to the global COVID-19 pandemic, in August 2021, the U.S.

View Article and Find Full Text PDF

SOX9 encodes an SRY-related transcription factor critical for chondrogenesis and sex determination among other processes. Loss-of-function variants cause campomelic dysplasia and Pierre Robin Sequence, while both gain- and loss-of-function variants cause disorders of sex development. SOX9 has also been linked to scoliosis and cancers, but variants are undetermined.

View Article and Find Full Text PDF

In many multicellular organisms, sexual development is not determined by XX/XY or ZW/ZZ systems but by U/V sex chromosomes. In U/V systems, sex determination occurs in the haploid phase, with U chromosomes in females and V chromosomes in males. Here, we explore several male, female, and partially sex-reversed male lines of giant kelp to decipher how U/V sex chromosomes and autosomes initiate male versus female development.

View Article and Find Full Text PDF

In species with genetic sex determination (GSD), the sex identity of the soma determines germ cell fate. For example, in mice, XY germ cells that enter an ovary differentiate as oogonia, whereas XX germ cells that enter a testis initiate differentiation as spermatogonia. However, numerous species lack a GSD system and instead display temperature-dependent sex determination (TSD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!