Characterization of the G-quadruplexes in the transthyretin gene and its role in silencing transthyretin mRNA transcription.

Bioorg Med Chem Lett

MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China. Electronic address:

Published: January 2024

AI Article Synopsis

  • Transthyretin Amyloidosis is caused by the misfolding of the transthyretin protein, and this study explores how guanine-rich regions in its gene can form G-quadruplex structures, which may affect gene transcription.
  • Small molecule ligands like TMPyP4 and Braco-19 were shown to stabilize these G-quadruplexes, particularly enhancing the stability of one sequence identified as Ttrg 3.
  • The study found that treating HepG2 cells with these ligands significantly reduced transthyretin mRNA levels without causing cell death, suggesting G-quadruplex stabilization could be a new therapeutic strategy for treating Transthyretin Amyloidosis.

Article Abstract

Transthyretin Amyloidosis arises from the misfolding of monomers or oligomers of the normal transthyretin protein. Our investigation revealed that certain guanine-rich regions within the 5' UTR sequence of the transthyretin gene possess the ability to form G-quadruplex structures, as determined through analysis with QGRS mapper. We demonstrated that small molecule ligands, including TMPyP4, Braco-19, NMM, and TO, have a significant impact on the stabilization of transthyretin G-quadruplexes. The objective of this study was to confirm the effect of ligands on transthyretin gene transcription through the stabilization of G-quadruplexes. To comprehend the interaction between ligands and transthyretin G-quadruplexes, a range of analytical techniques were employed, includingUV titration, fluorescence titration assays, circular dichroism, quantitative RT-PCR and cytotoxicity tests. The results revealed the presence of four putative G-quadruplex sequences, which formed stable anti-parallel, parallel, and hybrid G-quadruplex structures. Notably, Ttrg 3 (5'-GGAAGGAAGGGAGGGAGGG-3') exhibited the highest stability to form G-quadruplex. Furthermore, TmPyP4, Braco-19, NMM and TO were found to stabilize the parallel topology of Ttrg 3. After 48 h of incubation, the RT-PCR experiments revealed a significant reduction in transthyretin mRNA transcription in HepG2 cells when treated with 20 μM TmPyP4 and Braco-19, without inducing apoptosis. Our findings suggested that ligand-mediated stabilization of G-quadruplexes within the 5'-UTR can effectively silence transthyretin expression, highlighting the potential of G-quadruplex as a novel therapeutic target for Transthyretin Amyloidosis. This study might shed valuable lights for the development of innovative therapeutic approach against Transthyretin Amyloidosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2023.129568DOI Listing

Publication Analysis

Top Keywords

transthyretin
12
transthyretin gene
12
transthyretin amyloidosis
12
tmpyp4 braco-19
12
transthyretin mrna
8
mrna transcription
8
form g-quadruplex
8
g-quadruplex structures
8
braco-19 nmm
8
transthyretin g-quadruplexes
8

Similar Publications

Cardiac amyloidosis represents a unique disease process characterized by amyloid fibril deposition within the myocardial extracellular space. Advances in multimodality cardiac imaging enable accurate diagnosis and facilitate prompt initiation of disease-modifying therapies. Furthermore, rapid advances in multimodality imaging have enriched understanding of the underlying pathogenesis, enhanced prognostication, and resulted in the development of imaging-based markers that reflect the amyloid burden, which is of increasing importance when assessing the response to treatment.

View Article and Find Full Text PDF

Amyloidosis is a rare pathology characterized by protein deposits in various organs and tissues. Cardiac amyloidosis (CA) can be caused by various protein deposits, but transthyretin amyloidosis (ATTR) and immunoglobulin light chain (AL) are the most frequent pathologies. Protein misfolding can be induced by several factors such as oxidative stress, genetic mutations, aging, chronic inflammation, and neoplastic disorders.

View Article and Find Full Text PDF

Development of specific therapies addressing the underlying diseases' mechanisms constitutes the basis of precision medicine. Transthyretin cardiac amyloidosis (ATTR-CM) is an exemplar of precise therapeutic approach in the field of heart failure and cardiomyopathies. A better understanding of the underlying pathophysiology, more precise data of its epidemiology, and advances in imaging techniques that allow non-invasive diagnosis have fostered the development of new and very effective specific therapies for ATTR-CM.

View Article and Find Full Text PDF

A Case of Transthyretin Cardiac Amyloidosis Coexisting With Rheumatoid Arthritis.

Cureus

December 2024

Graduate Medical Education (GME) Internal Medicine, Mary Washington Healthcare, Fredericksburg, USA.

Cardiac amyloidosis is a rare but increasingly recognized cause of heart failure, often underdiagnosed until later stages of the disease. This report describes a case of transthyretin amyloidosis (ATTR) in a 68-year-old male patient with a significant medical history of rheumatoid arthritis (RA), a combination seldom documented in the literature. The patient presented with progressive symptoms of heart failure, and diagnostic testing confirmed ATTR cardiac amyloidosis through pyrophosphate (PYP) scanning.

View Article and Find Full Text PDF

Transthyretin-Related Familial Amyloidosis Polyneuropathy with Spinal Cord Damage: A Case Report.

Int Med Case Rep J

January 2025

Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang Cerebrovascular Disease (Stroke) Clinical Medical Research Center, Regional Medical Center for Neurological Diseases of Henan Province, Luoyang, People's Republic of China.

Introduction: Transthyretin protein-related familial amyloidosis polyneuropathy (TTR-FAP) is an autosomal dominant genetic disease caused by mutations in the TTR gene. The disease is characterized primarily by peripheral and autonomic nerve damage. Disease progression is associated with frequent involvement of the heart, lungs, kidneys, eyes, and other organs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!