AI Article Synopsis

  • Gestodene (GES), a synthetic progesterone found in water, can lead to the masculinization of fish, but its metabolism's role in this process is unclear.
  • A study on adult female western mosquitofish exposed to varying GES concentrations showed that GES altered metabolic levels, causing oxidative stress and promoting ovarian cell apoptosis.
  • The exposure resulted in decreased levels of important hormones like estradiol and increased testosterone, indicating that GES disrupts hormone balance and ovarian metabolism through various biological pathways.

Article Abstract

Gestodene (GES) is a common synthetic progesterone frequently detected in aquatic environments. Chronic exposure to GES can cause masculinization of a variety of fish; however, whether metabolism is closely related to the masculinization has yet to be explored. Hence, the ovary metabolome of adult female western mosquitofish (Gambusia affinis) after exposing to GES (0.0, 5.0, 50.0, and 500.0 ng/L) for 40 days was analyzed by using high-performance liquid chromatography ionization with quadrupole time-of-flight tandem mass spectrometry (HPLC-QTOF-MS). The results showed that GES increased the levels of cysteine, taurine, ophthalmic acid and cAMP while decreased methionine, these metabolites changes may owing to the oxidative stress of the ovaries; while taurcholic acid and uric acid were decreased along with induced oocyte apopotosis. Steroids hormone metabolism was also significantly affected, with progesterone and cortisol being the most affected. Enzyme-linked immunoassay results showed that estradiol levels were decreased while testosterone levels were increased with GES exposure. In addition, correlation analysis showed that the differential metabolites of some amino acids (e.g. leucine) were strongly correlated with the levels of steroids hormones secreted by the pituitary gland. The results of this study suggest that GES affects ovarian metabolism via the hypothalamus-pituitary-gonad and hypothalamic-pituitary-adrenal axes, impair antioxidant capacity, induce apoptosis in the ovary of G. affinis, and finally caused masculinization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.168693DOI Listing

Publication Analysis

Top Keywords

western mosquitofish
8
mosquitofish gambusia
8
gambusia affinis
8
ges
6
gestodene masculinization
4
masculinization western
4
affinis insights
4
insights ovary
4
ovary metabolomics
4
metabolomics gestodene
4

Similar Publications

Visual signals are crucial for animals to obtain information about their environment, and they play a significant role in mate choice. However, individual variability and factors such as movement patterns can hinder research flexibility. A key challenge in this field is the accurate simulation of specific movements and behaviors.

View Article and Find Full Text PDF

Effects of steroid hormones and their mixtures on western mosquitofish (Gambusia affinis).

Aquat Toxicol

January 2025

SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, University Town, Guangzhou 510006, PR China.

Steroid hormones, including estrone (E1), androstadienedione (ADD), and androstenedione (AED), are prevalent in aquatic ecosystems and pose ecological risks due to their disruptive influence on fish populations. However, little consideration has been given to the endocrine disrupting effects of fish exposed to complex mixtures of hormones in the real world. In this study, adult female western mosquitofish (Gambusia affinis) were exposed to two concentrations of E1 (100 ng/L for E1L and 5,000 ng/L for E1H), ADD (100 ng/L for ADDL and 10,000 ng/L for ADDH), and AED (100 ng/L for AEDL and 10,000 ng/L for AEDH) as well as four binary mixture treatments (ADDL+E1L, ADDH+E1H, AEDL+E1L, and AEDH+E1H).

View Article and Find Full Text PDF

Clinostomids are a group of digeneans in which substantial diversity has been recently discovered, with some metacercariae specific to their fish hosts. Genetic analysis has been instrumental in elucidating species diversity within this genus. Recently, seven COI lineages were reported in Argentina, along with three metacercarial morphotypes lacking molecular data.

View Article and Find Full Text PDF

Aquatic ecosystems are often negatively affected by invasive species. However, biotic resistance by native species, either by competition or predation, can reduce the impacts of invasions by non-native species. The Western Mosquitofish () is one of the most impactful invasive species of freshwater fish and cause declines in native fish populations.

View Article and Find Full Text PDF

Repeated evolution of novel life histories that are correlated with ecological variables offers opportunities to study convergence in genetic, developmental, and metabolic features. Nearly half of the 800 species of Aplocheiloid killifishes, a clade of teleost fishes with a circumtropical distribution, are "annual" or seasonal species that survive in ephemeral bodies of water that desiccate and are unfeasible for growth, reproduction, or survival for weeks to months every year. But the repeated evolution of adaptations that are key features of the annual life history among these fishes remains poorly known without a robust phylogenetic framework.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!