Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aquaculture of Largemouth Bass (LMB, Micropterus salmoides), an economically important species, is badly affected by the outbreak of bacterial diseases in summer. However, the mechanisms underlying heat-induced disease susceptibility remain largely unknown. In this study, after exposure to 34 °C for 1, 7 and 14 d, the head kidney, spleen and blood of LMB were sampled for biochemical and histological assays to explore the effects of heat exposure on the oxidative and immunological indices. Compared to the controls maintained at 28 °C, chronic heat exposure (34 °C for 14 d) induced oxidative stress, caused cell apoptosis and decreased expression of the immunological genes in the head kidney and spleen tissues; and attenuated the blood immunological indices. Consistent with the impaired immunological functions, chronic heat exposure predisposed LMB to Aeromonas hydrophila infection and significantly (p < 0.001) increased tissue bacterial load. Furthermore, the effects of chronic heat exposure (heat), A. hydrophila infection (infection) and heat exposure followed by A. hydrophila infection (heat + infection) on gene expression in the head kidney and spleen of LMB were characterized by RNA sequencing. The results indicated that chronic heat exposure facilitated the bacteria-elicited changes in expression of the genes involved in a couple of metabolic and signaling pathways in both tissues. Upon heat + infection, the pathways involved in energy production and nutrients biosynthesis were enhanced, whereas those associated with the host cell functions such as cell-cell interactions and cell signaling were depressed. Our data provide new insights into the mechanisms underlying heat-induced disease susceptibility in LMB.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.168758 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!