Freshwater biodiversity, ecosystem functions and services are changing at an unprecedented rate due to the impacts of vast number of stressors overlapping in time and space. Our study aimed at characterizing individual and combined impacts of pollution with pharmaceuticals (PhACs) and endocrine disrupting compounds (EDCs) and increased water temperature (as a proxy for climate change) on primary producers and first level consumers in freshwaters. We conducted a microcosm experiment with a simplified freshwater food web containing moss (Bryophyta) and shredding caddisfly larvae of Micropterna nycterobia (Trichoptera). The experiment was conducted with four treatments; control (C), increased water temperature + 4 °C (T2), emerging contaminants' mix (EC = 15 PhACs & 5 EDCs), and multiple stressor treatment (MS = EC + T2). Moss exhibited an overall mild response to selected stressors and their combination. Higher water temperature negatively affected development of M. nycterobia through causing earlier emergence of adults and changes in their lipidome profiles. Pollution with PhACs and EDCs had higher impact on metabolism of all life stages of M. nycterobia than warming. Multiple stressor effect was recorded in M. nycterobia adults in metabolic response, lipidome profiles and as a decrease in total lipid content. Sex specific response to stressor effects was observed in adults, with impacts on metabolome generally more pronounced in females, and on lipidome in males. Thus, our study highlights the variability of both single and multiple stressor impacts on different traits, different life stages and sexes of a single insect species. Furthermore, our research suggests that the combined impacts of warming, linked to climate change, and contamination with PhACs and EDCs could have adverse consequences on the population dynamics of aquatic insects. Additionally, these findings point to a potential decrease in the quality of resources available for both aquatic and potentially terrestrial food webs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.168751 | DOI Listing |
JAMA
January 2025
Department of Medicine, University of California, San Francisco.
Environ Manage
January 2025
Department of Geoecology, Institute of Geosciences and Geography, Martin Luther University, Halle-Wittenberg, Halle (Saale), Germany.
In the face of unabated urban expansion, understanding the intrinsic characteristics of landscape structure is pertinent to preserving ecological diversity and managing the supply of ecosystem services. This study integrates machine-learning-based geospatial and landscape ecological techniques to assess the dynamics of landscape structure in cities of the rainforest (Akure and Owerri) and Guinea savanna (Makurdi and Minna) ecological regions of Nigeria between 1986 and 2022. Supervised classification using the random forest (RF) machine-learning classifier was performed on Landsat images on the Google Earth Engine (GEE) platform, and landscape metrics were calculated with FRAGSTATS to assess landscape composition, configuration, and connectivity.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany.
Terrestrial vegetation is a key component of the Earth system, regulating the exchange of carbon, water, and energy between land and atmosphere. Vegetation affects soil moisture dynamics by absorbing and transpiring soil water, thus modulating land-atmosphere interactions. Moreover, changes in vegetation structure (e.
View Article and Find Full Text PDFFront Plant Sci
January 2025
China Eco-city Academy Co., Ltd., Tianjin, China.
The establishment of conservation areas is an important strategy for endangered species conservation. In this study, we investigated the distributions of suitable habitat areas for three level 1 endangered Cupressaceae plants (, , and ) in China and used the Marxan model to delineate the priority conservation areas for each species. The results showed that had the broadest suitable growing area under the current climate in China and is followed by , with an area of 91 × 10 km, and had the smallest suitable habitat areas at only 7 × 10 km.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technology Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco.
With climate change, the frequency of regions experiencing water scarcity is increasing annually, posing a significant challenge to crop yield. Barley, a staple crop consumed and cultivated globally, is particularly susceptible to the detrimental effects of drought stress, leading to reduced yield production. Water scarcity adversely affects multiple aspects of barley growth, including seed germination, biomass production, shoot and root characteristics, water and osmotic status, photosynthesis, and induces oxidative stress, resulting in considerable losses in grain yield and its components.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!