Current advances in comprehensive omics data mining for oncology and cancer research.

Biochim Biophys Acta Rev Cancer

Research Institute of Women's Health, Sookmyung Women's University, Seoul 04310, Republic of Korea; Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Republic of Korea. Electronic address:

Published: January 2024

The availability of a large amount of multiomics data enables data-driven discovery studies on cancers. High-throughput data on mutations, gene/protein expression, immune scores (tumor-infiltrating cells), drug screening, and RNAi (shRNAs and CRISPRs) screening are major integrated components of patient samples and cell line datasets. Improvements in data access and user interfaces make it easy for general scientists to carry out their data mining practices on integrated multiomics data platforms without computational expertise. Here, we summarize the extent of data integration and functionality of several portals and software that provide integrated multiomics data mining platforms for all cancer studies. Recent progress includes programming interfaces (APIs) for customized data mining. Precalculated datasets assist noncomputational users in quickly browsing data associations. Furthermore, stand-alone software provides fast calculations and smart functions, guiding optimal sampling and filtering options for the easy discovery of significant data associations. These efforts improve the utility of cancer omics big data for noncomputational users at all levels of cancer research. In the present review, we aim to provide analytical information guiding general scientists to find and utilize data mining tools for their research.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbcan.2023.189030DOI Listing

Publication Analysis

Top Keywords

data mining
20
data
13
multiomics data
12
general scientists
8
integrated multiomics
8
noncomputational users
8
data associations
8
mining
5
current advances
4
advances comprehensive
4

Similar Publications

RNA Virus Discovery Sheds Light on the Virome of a Major Vineyard Pest, the European Grapevine Moth ().

Viruses

January 2025

Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina.

The European grapevine moth () poses a significant threat to vineyards worldwide, causing extensive economic losses. While its ecological interactions and control strategies have been well studied, its associated viral diversity remains unexplored. Here, we employ high-throughput sequencing data mining to comprehensively characterize the virome, revealing novel and diverse RNA viruses.

View Article and Find Full Text PDF

Canakinumab, a humanized anti-IL-1β monoclonal antibody, is known for its ability to suppress IL-1β-mediated inflammation. However, continuous monitoring of its safety remains essential. Thus, we comprehensively evaluated the safety signals of canakinumab by data mining from FAERS.

View Article and Find Full Text PDF

Mid-infrared spectral analysis has long been recognized as the most accurate noninvasive blood glucose measurement method, yet no practical compact mid-infrared blood glucose sensor has ever passed the accuracy benchmark set by the USA Food and Drug Administration (FDA): to substitute for the finger-pricking glucometers in the market, a new sensor must first show that 95% of their glucose measurements have errors below 15% of these glucometers. Although recent innovative exploitations of the well-established Fourier-transform infrared (FTIR) spectroscopy have reached such FDA accuracy benchmarks, an FTIR spectrometer is too bulky. The advancements of quantum cascade lasers (QCLs) can lead to FTIR spectrometers of reduced size, but compact QCL-based noninvasive blood glucose sensors are not yet available.

View Article and Find Full Text PDF

Artificial intelligence (AI), particularly through advanced large language model (LLM) technologies, is reshaping coal mine safety assessment methods with its powerful cognitive capabilities. Given the dynamic, multi-source, and heterogeneous characteristics of data in typical mining scenarios, traditional manual assessment methods are limited in their information processing capacity and cost-effectiveness. This study addresses these challenges by proposing an embodied intelligent system for mine safety assessment based on multi-level large language models (LLMs) for multi-source sensor data.

View Article and Find Full Text PDF

Aiming at the problems caused by a lack of feature matching due to occlusion and fixed model parameters in cross-domain person re-identification, a method based on multi-branch pose-guided occlusion generation is proposed. This method can effectively improve the accuracy of person matching and enable identity matching even when pedestrian features are misaligned. Firstly, a novel pose-guided occlusion generation module is designed to enhance the model's ability to extract discriminative features from non-occluded areas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!