Assessing industrial wastewater effluent toxicity using boosting algorithms in machine learning: A case study on ecotoxicity prediction and control strategy development.

Environ Pollut

Centre for Environmental and Energy Research, Ghent University Global Campus, Incheon 21985, Republic of Korea; Department of Green Chemistry and Technology, Ghent University, Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent B9000, Belgium. Electronic address:

Published: January 2024

Trace heavy metals have a tendency to persist in the effluent of industrial wastewater treatment facilities, leading to toxic effects on downstream water bodies. Traditional assessment methods relied on animal testing, but ethical concerns have rendered them unacceptable. An alternative solution is to evaluate wastewater toxicity using trophic-level aquatic organisms as bioassays. However, these bioassay methods involve costly and time-consuming chemical and biological analytical experiments. In this study, an artificial intelligence-powered water quality assessment (AiWA) approach is proposed for predicting industrial effluent ecotoxicity to further enhance the quick and cost-effective ecotoxicity assessment process. Initially, 99 samples were collected from industrial wastewater treatment plants representing 21 different industries in the Republic of Korea. Fourteen parameters were measured, encompassing both physicochemical and ecotoxicological aspects. Boosting algorithms, especially extreme gradient boosting (XGBoost) and adaptive boosting (AdaBoost), were employed for model development. XGBoost outperformed AdaBoost in terms of model performance. Feature selection analysis revealed that conductivity, copper, lead, selenium, pH, and zinc concentrations were the most suitable inputs for training the boosting model. The innovated XGBoost-based AiWA model demonstrated significantly higher performance (i.e., up to 80%) compared to conventional models with an R value of exceeding 0.94 and root mean square error of 3.5 toxicity unit for predicting the integrated toxicity unit (ITU). Additionally, pH and conductivity emerged as crucial indicators for reflecting ecotoxicity levels. Specially, this case study indicated that non-toxic/directly dischargeable levels (TU ≤ 1) were achieved when the pH ranged from 6.8 to 8.4 and the conductivity remained below 1651 μS/cm. These findings are expected to facilitate rapid and cost-effective detection of heavy metal ecotoxicity in industrial wastewater effluents, aiding decision-making in wastewater management.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2023.123017DOI Listing

Publication Analysis

Top Keywords

industrial wastewater
16
boosting algorithms
8
case study
8
wastewater treatment
8
toxicity unit
8
wastewater
6
boosting
5
ecotoxicity
5
assessing industrial
4
wastewater effluent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!