Melatonin protects photoreceptor cells against ferroptosis in dry AMD disorder by inhibiting GSK-3B/Fyn-dependent Nrf2 nuclear translocation.

Biochim Biophys Acta Mol Basis Dis

Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China. Electronic address:

Published: February 2024

Background: Ferroptosis is a type of non-apoptotic cell death that relies on iron ions and reactive oxygen species to induce lipid peroxidation. This study aimed to determine whether ferroptosis exists in the pathogenesis of dry age-related macular degeneration (AMD) and to confirm that melatonin (MLT) suppresses the photoreceptor cell ferroptosis signaling pathway.

Methods: We exposed 661W cells to sodium iodate (NaIO) in vitro and treated them with different concentrations of MLT. In vivo, C57BL/6 mice were given a single caudal vein injection of NaIO, followed by an intraperitoneal injection of MLT, and eyeballs were taken for subsequent trials.

Results: We found that NaIO could induce photoreceptor cell death and lipid peroxide accumulation, and result in changes in the expression of ferroptosis-related factors and iron maintenance proteins, which were treated by MLT. We further demonstrated that MLT can block Fyn-dependent Nrf2 nuclear translocation by suppressing the GSK-3β signaling pathway. In addition, the therapeutic effect of MLT was significantly inhibited when Nrf2 was silenced.

Conclusions: Our findings provide a novel insight that NaIO induces photoreceptor cell ferroptosis in dry AMD and suggest that MLT has therapeutic effects by suppressing GSK-3β/Fyn-dependent Nrf2 nuclear translocation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbadis.2023.166969DOI Listing

Publication Analysis

Top Keywords

nrf2 nuclear
12
nuclear translocation
12
photoreceptor cell
12
ferroptosis dry
8
dry amd
8
cell death
8
cell ferroptosis
8
mlt
7
ferroptosis
5
melatonin protects
4

Similar Publications

Ferroptosis, an iron-dependent form of programmed cell death driven by oxidative stress, plays a crucial role in the progression of Alzheimer's disease (AD). Aging diminishes antioxidant systems that maintain iron homeostasis, particularly affecting the glutathione peroxidase (GPX) system, leading to increased ferroptosis and exacerbated neurodegeneration and neuroinflammation in AD. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcription factor regulating genes involved in antioxidant defense and ferroptosis.

View Article and Find Full Text PDF

Background: In Alzheimer's disease (AD), histone acetylation is disrupted, suggesting loss of transcriptional control. Moreover, converging evidence suggests an age- and AD-dependent loss of transcription controlled by all-trans-retinoic acid (ATRA), the bioactive metabolite of vitamin A (VA). Antioxidant depletion causes oxidative stress (OS).

View Article and Find Full Text PDF

Lung Ischemia-reperfusion injury (LIRI) is a risk during lung transplantation that can cause acute lung injury and organ failure. In LIRI, the NF-E2-related factor 2(Nrf2)/ Kelch-like ECH-associated protein 1 (Keap1) signaling pathway and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway are two major pathways involved in regulating oxidative stress and inflammation, respectively. Myrtenol, a natural compound with anti-inflammatory and antioxidant properties, has potential protective effects against IRI.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a prevalent and challenging neurodegenerative disorder, and may involve impaired autophagy. Nuclear factor erythroid-2-related factor 2 (Nrf2) is crucial for regulating autophagy-related genes, maintaining cellular homeostasis. Electroacupuncture (EA), a complementary and alternative therapy for PD, has gained widespread clinical application.

View Article and Find Full Text PDF

TYMS Enhances Colorectal Cell Antioxidant Capacity Via the KEAP1-NRF2 Pathway to Resist Ferroptosis.

J Cancer

January 2025

The Colorectal and Anal Surgery Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China.

Thymidylate synthase (TYMS) is a key regulatory enzyme in DNA synthesis. We identified the biological effect and molecular mechanisms of TYMS in colorectal cancer (CRC). We employed western blot and immunohistochemistry for the assessment of TYMS expression in CRC samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!