Scaling of Protein Function across the Tree of Life.

Genome Biol Evol

Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.

Published: December 2023

Scaling laws are a powerful way to compare genomes because they put all organisms onto a single curve and reveal nontrivial generalities as genomes change in size. The abundance of functional categories across genomes has previously been found to show power law scaling with respect to the total number of functional categories, suggesting that universal constraints shape genomic category abundance. Here, we look across the tree of life to understand how genome evolution may be related to functional scaling. We revisit previous observations of functional genome scaling with an expanded taxonomy by analyzing 3,726 bacterial, 220 archaeal, and 79 unicellular eukaryotic genomes. We find that for some functional classes, scaling is best described by multiple exponents, revealing previously unobserved shifts in scaling as genome-encoded protein annotations increase or decrease. Furthermore, we find that scaling varies between phyletic groups at both the domain and phyla levels and is less universal than previously thought. This variability in functional scaling is not related to taxonomic phylogeny resolved at the phyla level, suggesting that differences in cell plan or physiology outweigh broad patterns of taxonomic evolution. Since genomes are maintained and replicated by the functional proteins encoded by them, these results point to functional degeneracy between taxonomic groups and unique evolutionary trajectories toward these. We also find that individual phyla frequently span scaling exponents of functional classes, revealing that individual clades can move across scaling exponents. Together, our results reveal unique shifts in functions across the tree of life and highlight that as genomes grow or shrink, proteins of various functions may be added or lost.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10715193PMC
http://dx.doi.org/10.1093/gbe/evad214DOI Listing

Publication Analysis

Top Keywords

tree life
12
scaling
11
functional
9
functional categories
8
functional scaling
8
functional classes
8
scaling exponents
8
genomes
6
scaling protein
4
protein function
4

Similar Publications

Evaluating Spherical Trees in the Urban Environment in Budapest (Hungary).

Plants (Basel)

January 2025

Department of Landscape Protection and Reclamation, Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary.

The world's big cities, including Budapest, are becoming more crowded, with more and more people living in smaller and smaller spaces. There is an increasing demand for more green space and trees, with less vertical and less horizontal space. In addition, deteriorating environmental conditions are making it even more difficult for trees to grow and survive.

View Article and Find Full Text PDF

Analysis of the CHS Gene Family Reveals Its Functional Responses to Hormones, Salinity, and Drought Stress in Moso Bamboo ().

Plants (Basel)

January 2025

State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.

Chalcone synthase (CHS), the first key structural enzyme in the flavonoid biosynthesis pathway, plays a crucial role in regulating plant responses to abiotic stresses and hormone signaling. However, its molecular functions remain largely unknown in , which is one of the most economically and ecologically important bamboo species and the most widely distributed one in China. This study identified 17 genes in and classified them into seven subgroups, showing a closer evolutionary relationship to genes from rice.

View Article and Find Full Text PDF

(1) Background: is a major parasite of large porpoises and whales and has been classified in the Habronematoidea family. However, there has been a great controversy regarding its classification. Mitochondria have an important function in revealing taxonomic and evolutionary history.

View Article and Find Full Text PDF

Advances in the Study of Heartwood Formation in Trees.

Life (Basel)

January 2025

State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China.

Heartwood, serving as the central constituent of the xylem, plays a crucial role in the growth, development, and resilience of trees. The process of heartwood formation constitutes a complex biological phenomenon influenced by various factors. A thorough examination of the mechanisms underpinning heartwood formation not only enhances our understanding of the growth and developmental paradigms regulating trees but also provides essential theoretical support and practical insights for the timber industry, forestry management, and ecological conservation.

View Article and Find Full Text PDF

Background: Undiagnosed and untreated atherosclerotic renal artery stenosis (ARAS) can result in end-stage kidney disease (ESKD). To obtain an accurate diagnosis, it is crucial to recognize the symptoms and signs suggesting renal artery stenosis (RAS) and perform appropriate diagnostic and treatment procedures afterward.

Case Presentation: We present a case of a 60-year-old female patient with hypertensive crisis, acute heart failure (HF), and pulmonary edema as the initial signs of acute kidney injury (AKI) caused by right RAS and left renal artery occlusion in the presence of severe aortic atherosclerosis revealed on computed tomography angiography (CTA) of the abdomen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!