Keratin 15 protects against cigarette smoke-induced epithelial mesenchymal transformation by MMP-9.

Respir Res

Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.

Published: November 2023

Background: Chronic obstructive pulmonary disease (COPD), a chronic inflammatory lung disease, is a leading cause of morbidity and mortality worldwide. Prolonged cigarette smoking (CS) that causes irreversible airway remodeling and significantly reduces lung function is a major risk factor for COPD. Keratin15 (Krt15) cells with the potential of self-renewal and differentiation properties have been implicated in the maintenance, proliferation, and differentiation of airway basal cells; however, the role of Krt15 in COPD is not clear.

Methods: Krt15 knockout (Krt15) and wild-type (WT) mice of C57BL/6 background were exposed to CS for six months to establish COPD models. Krt15-CrePGR;Rosa26-LSL-tdTomato mice were used to trace the fate of the Krt15 cells. Hematoxylin and eosin (H&E) and Masson stainings were performed to assess histopathology and fibrosis, respectively. Furthermore, lentivirus-delivered short hairpin RNA (shRNA) was used to knock down KRT15 in human bronchial epithelial (HBE) cells stimulated with cigarette smoke extract (CSE). The protein expression was assessed using western blot, immunohistochemistry, and enzyme-linked immunosorbent assay.

Results: Krt15 CS mice developed severe inflammatory cell infiltration, airway remodeling, and emphysema. Moreover, Krt15 knockout aggravated CS-induced secretion of matrix metalloproteinase-9 (MMP-9) and epithelial-mesenchymal transformation (EMT), which was reversed by SB-3CT, an MMP-9 inhibitor. Consistent with this finding, KRT15 knockdown promoted MMP-9 expression and EMT progression in vitro. Furthermore, Krt15 cells gradually increased in the bronchial epithelial cells and were transformed into alveolar type II (AT2) cells.

Conclusion: Krt15 regulates the EMT process by promoting MMP-9 expression and protects the lung tissue from CS-induced injury, inflammatory infiltration, and apoptosis. Furthermore, Krt15 cells transformed into AT2 cells to protect alveoli. These results suggest Krt15 as a potential therapeutic target for COPD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675954PMC
http://dx.doi.org/10.1186/s12931-023-02598-wDOI Listing

Publication Analysis

Top Keywords

krt15 cells
16
krt15
13
airway remodeling
8
cells
8
krt15 knockout
8
bronchial epithelial
8
mmp-9 expression
8
cells transformed
8
mmp-9
5
copd
5

Similar Publications

Unlabelled: Quantitative understanding of mitochondrial heterogeneity is necessary for elucidating the precise role of these multifaceted organelles in tumor cell development. We demonstrate an early mechanistic role of mitochondria in initiating neoplasticity by performing quantitative analyses of structure-function of single mitochondrial components coupled with single cell transcriptomics. We demonstrate that the large Hyperfused-Mitochondrial-Networks (HMNs) of keratinocytes promptly get converted to the heterogenous Small-Mitochondrial-Networks (SMNs) as the stem cell enriching dose of the model carcinogen, TCDD, depolarizes mitochondria.

View Article and Find Full Text PDF

Background/objectives: Breast cancer is the second most common malignancy worldwide and poses a significant threat to women's health. However, the prognostic biomarkers and therapeutic targets of breast cancer are unclear. A prognostic model can help in identifying biomarkers and targets for breast cancer.

View Article and Find Full Text PDF

Epithelial differentiation of gingival mesenchymal stem cells enhances re-epithelialization for full-thickness cutaneous wound healing.

Stem Cell Res Ther

November 2024

Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China.

Background: Increasing evidence suggests that mesenchymal stem cells (MSCs) repair traumatized tissues primarily through paracrine secretion and differentiation into specific cell types. However, the role of epithelial differentiation of MSCs in cutaneous wound healing is unclear. This study aimed to investigate the epithelial differentiation potential of gingival tissue-derived MSCs (GMSCs) in epithelial cell growth medium and the mechanisms underlying their differentiation into an epithelial-like cell phenotype.

View Article and Find Full Text PDF

Background: Human artificial corneas (HAC) generated by tissue engineering recently demonstrated clinical usefulness in the management of complex corneal diseases. However, the biological mechanisms associated to their regenerative potential need to be elucidated.

Methods: In the present work, we generated HAC using nanostructured fibrin-agarose biomaterials with cultured corneal epithelial and stromal cells, and we compared the structure and histochemical and immunohistochemical profiles of HAC with control native corneas (CTR-C) and limbus (CTR-L) to determine the level of biomimicry of the HAC with these two native organs.

View Article and Find Full Text PDF

Varicella-zoster virus (VZV) is the etiological agent of chickenpox and shingles, diseases characterised by epidermal virus replication in skin and mucosa and the formation of blisters. We have previously shown that VZV infection has a profound effect on keratinocyte differentiation, altering the normal pattern of epidermal gene expression. In particular, VZV infection reduces expression of suprabasal keratins 1 and 10 and desmosomal proteins, disrupting epidermal structure to promote expression of a blistering phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!