Dynamic Susceptibility Contrast Perfusion, Part 2: Deployment With and Without Contrast Leakage Present.

Magn Reson Imaging Clin N Am

Department of Radiology and Radiological Sciences, Monash University, Clayton, VIC, Australia; Monash Imaging, Monash Health, Clayton, VIC, Australia.

Published: February 2024

A thorough description of perfusion analysis and basic DSC MR acquisition concepts has been described in the companion article to this article, which the interested reader may also find useful. DSC MR imaging requires an MR imaging pulse sequence that is sensitive to magnetic susceptibility changes to register the contrast concentration changes when GBCA passes through the capillary bed. Any pulse sequence that has T∗-weighting can be used to pick up these changes, provided that the sequence is fast enough to acquire an image of that slice of tissue at least every 1 to 2 second.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mric.2023.09.011DOI Listing

Publication Analysis

Top Keywords

pulse sequence
8
dynamic susceptibility
4
susceptibility contrast
4
contrast perfusion
4
perfusion deployment
4
deployment contrast
4
contrast leakage
4
leakage thorough
4
thorough description
4
description perfusion
4

Similar Publications

Background: Nemonoxacin is a new quinolone with an antibacterial efficacy against methicillin-resistant Staphylococcus aureus (MRSA). Certain sequence types (STs) have been emerging in Taiwan, including fluoroquinolone-resistant ST8/USA300. It's an urgent need to determine nemonoxacin susceptibility against ST8/USA300 and other emerging lineages, if any.

View Article and Find Full Text PDF

Ultra-high-resolution brain MRI at 0.55T: bSTAR and its application to magnetization transfer ratio imaging.

Z Med Phys

January 2025

Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland; Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland.

Purpose: This study aims to evaluate the feasibility of structural sub-millimeter isotropic brain MRI at 0.55 T using a 3D half-radial dual-echo balanced steady-state free precession sequence, termed bSTAR and to assess its potential for high-resolution magnetization transfer imaging.

Methods: Phantom and in-vivo imaging of three healthy volunteers was performed on a low-field 0.

View Article and Find Full Text PDF

Identifying the origins of storm fluvial particulate organic carbon (POC) provides information about the hydrological connectivity within the river corridor and the roles of the land-stream interface in the carbon cycle. However, current understanding of storm-induced POC source dynamics is constrained by observations limited in space and time. This study presents a unique approach integrating higher spatial and temporal resolution sampling with a multi-biomarker analysis to better understand POC source dynamics across scales.

View Article and Find Full Text PDF

The twin reversed arterial perfusion (TRAP) sequence is a rare complication associated with monochorionic twins. It is characterized by blood flow from the umbilical artery of the normal (pump) twin to the umbilical artery of the abnormal (acardiac) twin via artery-to-artery anastomosis. This condition is associated with 100% mortality in the acardiac twin and a high rate of perinatal morbidity and mortality in the pump twin, primarily due to intrauterine hypoxic injury, heart failure, and prematurity.

View Article and Find Full Text PDF

Objectives: In Pseudomonas aeruginosa isolates, emerging meropenem resistance beyond imipenem resistance has become a problem. In this study, we aimed to investigate the relationship between the in vivo acquisition of antimicrobial resistance in fluoroquinolone- and carbapenem-resistant P. aeruginosa clinical isolates, the underlying molecular mechanisms, and exposure to antimicrobial agents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!