Activation network improves spatiotemporal modelling of human brain communication processes.

Neuroimage

Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China; Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau, 999078, China. Electronic address:

Published: January 2024

Dynamic functional networks (DFN) have considerably advanced modelling of the brain communication processes. The prevailing implementation capitalizes on the system and network-level correlations between time series. However, this approach does not account for the continuous impact of non-dynamic dependencies within the statistical correlation, resulting in relatively stable connectivity patterns of DFN over time with limited sensitivity for communication dynamic between brain regions. Here, we propose an activation network framework based on the activity of functional connectivity (AFC) to extract new types of connectivity patterns during brain communication process. The AFC captures potential time-specific fluctuations associated with the brain communication processes by eliminating the non-dynamic dependency of the statistical correlation. In a simulation study, the positive correlation (r=0.966,p<0.001) between the extracted dynamic dependencies and the simulated "ground truth" validates the method's dynamic detection capability. Applying to autism spectrum disorders (ASD) and COVID-19 datasets, the proposed activation network extracts richer topological reorganization information, which is largely invisible to the DFN. Detailed, the activation network exhibits significant inter-regional connections between function-specific subnetworks and reconfigures more efficiently in the temporal dimension. Furthermore, the DFN fails to distinguish between patients and healthy controls. However, the proposed method reveals a significant decrease (p<0.05) in brain information processing abilities in patients. Finally, combining two types of networks successfully classifies ASD (83.636 % ± 11.969 %,mean±std) and COVID-19 (67.333 % ± 5.398 %). These findings suggest the proposed method could be a potential analytic framework for elucidating the neural mechanism of brain dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2023.120472DOI Listing

Publication Analysis

Top Keywords

brain communication
16
communication processes
12
activation network
8
statistical correlation
8
connectivity patterns
8
brain
5
communication
5
network improves
4
improves spatiotemporal
4
spatiotemporal modelling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!