How to effectively leverage wastewater data to estimate the risk of various infectious diseases remains a great challenge. To address this issue, we conducted continuous wastewater surveillance in Dalian city during the summer-autumn seasons of 2022, targeting coronavirus and bacterial diseases. The surveillance included daily sampling at a wastewater treatment plant (WWTP) and weekly sampling in three sewersheds. Targeting the bacteria's 16S rRNA gene and the coronavirus's RNA-dependent RNA polymerase (RdRp) gene, we first employed RT-PCR and amplicon sequencing techniques to analyze the presence and phylogenetic relationship of detected coronavirus and bacterial pathogens. Next, qPCR was used to quantify the abundances of detected coronavirus and bacterial species. Based on the daily shedding dynamics of SARS-CoV-2, a novel model was developed to predict daily new cases. Based on the medium shedding density of 12 pathogens, two thresholds of sewage pathogen load (indicating 0.1 % and 1 % infection rates) were proposed. Our PanCoV RT-PCR detected coronavirus on 12th August and from 26th August to 12th September 2022. Targeted amplicon sequencing further identified human coronavirus OC43 (hCoV-OC43) on 12th August and the SARS-CoV-2 Omicron variant since 26th August in samples from WWTPs and sewersheds. Phylogenetic analysis revealed that hCoV-OC43 from this study belonged to genotype K and suggested a close relationship between the amplified coronavirus sequences from wastewater and clinical samples in a local COVID-19 outbreak on 26th August. Amplicon sequencing targeting the bacterial 16S rRNA gene also revealed the presence of several bacterial pathogens. Finally, we assessed the microbial risk of specific pathogens in sewersheds and identified a number of pathogens that reached high (>1 % prevalence) and medium risk levels (>0.1 % prevalence) at sewershed B. Our findings underline wastewater surveillance as a valuable early warning system for coronavirus and other waterborne bacterial diseases, complementing public health response measures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.168797 | DOI Listing |
Plant Biol (Stuttg)
January 2025
Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany.
Plant individuals within a species can differ markedly in their leaf chemical composition, forming so-called chemotypes. Little is known about whether such differences impact the microbial communities associated with leaves and how different environmental conditions may shape these relationships. We used Tanacetum vulgare as a model plant to study the impacts of maternal effects, leaf terpenoid chemotype, and the environment on the leaf bacterial community by growing plant clones in the field and a greenhouse.
View Article and Find Full Text PDFAm J Bot
January 2025
Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA.
Premise: The ability of plants to adapt or acclimate to climate change is inherently linked to their interactions with symbiotic microbes, notably fungi. However, it is unclear whether fungal symbionts from different climates have different impacts on the outcome of plant-fungal interactions, especially under environmental stress.
Methods: We tested three provenances of fungal inoculum (originating from dry, moderate or wet environments) with one host plant genotype exposed to three soil moisture regimes (low, moderate and high).
BMC Microbiol
January 2025
Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil.
Amazonian Dark Earths (ADEs) are fertile soils from the Amazon rainforest that harbor microorganisms with biotechnological potential. This study aimed to investigate the individual and potential synergistic effects of a 2% portion of ADEs and Urochloa brizantha cv. Marandu roots (Brazil's most common grass species used for pastures) on soil prokaryotic communities and overall soil attributes in degraded soil.
View Article and Find Full Text PDFJ Glob Antimicrob Resist
January 2025
Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy; ESCMID Study Group for Legionella Infections (ESGLI), Basel, Switzerland. Electronic address:
Background: Although antimicrobial resistance has not yet emerged as an overarching problem for Legionella pneumophila (Lp) infection, the description of clinical and environmental strains resistant to fluoroquinolones and macrolides is a cause of concern. This study aimed to investigate the antimicrobial susceptibility of Lp human isolates in Italy.
Methods: A total of 204 Lp clinical isolates were tested for sensitivity to nine antibiotics using the broth microdilution assay (BMD).
Sci Total Environ
January 2025
Department of Microbiology, Pondicherry University, Kalapet, Puducherry 605014, India. Electronic address:
Climate change-induced rise in sea surface temperatures has led to an increase in the frequency and severity of coral bleaching events, ultimately leading to the deterioration of coral reefs, globally. However, the reef-building corals have an inherent capacity to acclimatize to thermal stress on pre-exposure to high temperatures by altering their endosymbiotic Symbiodiniaceae community composition towards a thermal tolerant composition. This reorganisation may become an important tool in coral's resilience to rapid environmental change.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!