Today, the limited sources of freshwater supply are a significant concern. Exploiting alternative sources, especially seawater, has been the focus, but purifying it is energy-intensive. Integrating desalination with renewable energy is a proposed solution, but it comes with high costs and environmental risks during construction. Hence, this study presents a framework to enhance the modeling, optimization, and evaluation of green water-power cogeneration systems to achieve the sustainability goals of cities and societies. An improved division algorithm (DA) determines the optimal component sizes based on criteria like minimal energy demand, reduced environmental and resource damage, low total life cycle cost (TLCC), and high reliability. Optimization considers varying loss of power supply probability (LPSP) levels (0 %, 2 %, 5 %, and 10 %). The environmental assessment utilizes a life cycle assessment (LCA) approach with IMPACT 2002+ and cumulative energy demand (CED) calculations. The study models the green cogeneration systems based on weather conditions, water demand, and power requirements of Al Lulu Island, Abu Dhabi, UAE. The system comprises photovoltaic panels, wind turbines, tidal generators, and backup systems (fuel cells). Results reveal that TLCC ranges from $186,263 to $486,876 for the highest LPSP. The solar-tidal-based configuration offers the lowest TLCC ($186,263) while substituting solar with wind energy increases TLCC by 160 %. The wind-tidal-based configuration has the lowest specific environmental impact (1020 mPt/yr) and cumulative energy demand (39.06 GJ/yr) for the highest LPSP. In contrast, the solar-tidal-wind-based configuration inflicts the most damage, with 62.63 GJ/yr and 1794 mPt/yr for the highest LPSP. The finding indicates that the DA is faster (100 iterations) than the genetic algorithm (1000 iterations), particle swarm optimization (400 iterations), and artificial bee swarm optimization (300 iterations). The study underscores the solar-tidal-based configuration as the optimal choice across multiple criteria, offering a promising solution for freshwater supply and environmental sustainability on Al Lulu Island.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.168668DOI Listing

Publication Analysis

Top Keywords

cogeneration systems
12
energy demand
12
highest lpsp
12
water-power cogeneration
8
freshwater supply
8
life cycle
8
cumulative energy
8
lulu island
8
solar-tidal-based configuration
8
swarm optimization
8

Similar Publications

Performance assessment of solar tower collector based integrated system for the cogeneration of power and cooling.

Heliyon

November 2024

Department of Electrical Engineering, College of Engineering, Majmaah University, Al-Majmaah, 11952, Saudi Arabia.

Integrating solar energy systems is an essential measure in advancing worldwide sustainability objectives and offers a sustainable, environmentally friendly approach to reducing greenhouse gas emissions and pollutants. To this direction, the proposed system integrating solar tower collector, supercritical CO, organic Rankine cycle, and single effect absorption refrigeration cycles shows potential as an efficient and sustainable solution for meeting energy and cooling demands. A detailed thermodynamic evaluation has been performed to gain valuable understanding of the energy and exergy performance, enabling the assessment of thermal and exergy efficiencies, exergy destructions, and heat losses.

View Article and Find Full Text PDF

Electroreforming of plastic wastes for value-added products.

Chem Commun (Camb)

December 2024

School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore.

The problem of plastic pollution is becoming increasingly serious, and there is an urgent need to reduce the use of plastics and to improve the recovery rate of plastic wastes. Plastic wastes can be transformed into value-added chemicals at the anode through electrocatalytic conversion, while coupling with cathodic reduction reactions to achieve cogeneration of valuable anodic and cathodic products. The plastic electroreforming technology has unprecedented advantages, including a green and decentralizable process, renewable energy storage, ecological benefits, resource recovery, cost-effectiveness, and so on.

View Article and Find Full Text PDF

Hydrogen can be a clean energy carrier, the utilization of which can help to reduce emissions and can potentially help in decarbonization of various sectors. The current study presents a technoeconomic analysis of hydrogen production using three electrolyzer technologies-alkaline electrolysis, polymer electrolyte membrane electrolysis and solid oxide electrolysis. The study considers the electricity system of Karnataka, a leader in renewable energy in India.

View Article and Find Full Text PDF

Increase in energy demand is shaping both developed and developing countries globally. As a result, the endeavour to reduce carbon emissions also encompasses electrical energy storage systems to ensure environmentally friendly power production and distribution. Currently, the scientific community is actively exploring and developing new storage technologies for this purpose.

View Article and Find Full Text PDF

A hybrid electro-thermochemical device for methane production from the air.

Nat Commun

October 2024

Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, Department of Mechanical and Energy Engineering, SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, China.

Coupling direct air capture (DAC) with methane (CH) production is a potential strategy for fuel production from the air. Here, we report a hybrid electro-thermochemical device for direct CH production from air. The proposed device features the cogeneration of carbon dioxide (CO) and hydrogen (H) in a single compartment via a bipolar membrane electrodialysis module, avoiding a separate water electrolyzer, followed by a thermochemical methanation reaction to produce CH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!