Immersive Virtual Reality to Assess Arm Kinematics among Older Adults with and without Major Neurocognitive Disorder - An Exploratory Cross-Sectional Study.

Neuroscience

School of Rehabilitation Sciences, Faculty of Medicine, Laval University, Quebec, QC, Canada; Centre interdisciplinaire de recherche en réadaptation et intégration sociale, Université Laval, Quebec, Canada. Electronic address:

Published: January 2024

Despite the recommendation of improving assessment objectivity and frequency, the use of immersive virtual reality to measure and quantify movement quality remains underexplored. In this study, we aimed to evaluate the reliability, validity and usability of an immersive virtual reality application, KinematicsVR, to assess upper limb kinematics among older adults with and without major neurocognitive disorder. The KinematicsVR involves the drawing of three-dimensional straight lines, circles and squares using a controller in a virtual environment. Twenty-eight older adults with or without major neurocognitive disorder were recruited. Reliability was evaluated through correlations on test-retest and validity through correlations between KinematicsVR variables and other functional tests (TEMPA, BBT-VR and Finger-Nose Test). The usability of the KinematicsVR was assessed with the System Usability Scale questionnaire. Kinematic indexes were compared between eight adults with major neurocognitive disorder and eight matched controls. Results indicated that most variables provided by the KinematicsVR had excellent reliability for tasks involving the drawing of straight lines and circles, but moderate reliability for tasks involving the drawing of squares. Secondary analyses showed that the usability of the application was excellent but few significant and strong correlations were observed between variables of the KinematicsVR and the scores of the TEMPA scale, Finger-Nose Test and BBT-VR. Adults with major neurocognitive disorder, when compared to other older adults, made larger and less linear hand movements. These findings provide perspectives for the use of immersive virtual reality to improve assessment frequency and objectivity through the autonomous measure of upper limb kinematics in older adults.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2023.10.024DOI Listing

Publication Analysis

Top Keywords

older adults
20
adults major
20
major neurocognitive
20
neurocognitive disorder
20
immersive virtual
16
virtual reality
16
kinematics older
12
upper limb
8
limb kinematics
8
straight lines
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!