A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluation of novel candidate filtration markers from a global metabolomic discovery for glomerular filtration rate estimation. | LitMetric

Creatinine and cystatin-C are recommended for estimating glomerular filtration rate (eGFR) but accuracy is suboptimal. Here, using untargeted metabolomics data, we sought to identify candidate filtration markers for a new targeted assay using a novel approach based on their maximal joint association with measured GFR (mGFR) and with flexibility to consider their biological properties. We analyzed metabolites measured in seven diverse studies encompasing 2,851 participants on the Metabolon H4 platform that had Pearson correlations with log mGFR and used a stepwise approach to develop models to < -0.5 estimate mGFR with and without inclusion of creatinine that enabled selection of candidate markers. In total, 456 identified metabolites were present in all studies, and 36 had correlations with mGFR < -0.5. A total of 2,225 models were developed that included these metabolites; all with lower root mean square errors and smaller coefficients for demographic variables compared to estimates using untargeted creatinine. Seventeen metabolites were chosen, including 12 new candidate filtration markers. The selected metabolites had strong associations with mGFR and little dependence on demographic factors. Candidate metabolites were identified with maximal joint association with mGFR and minimal dependence on demographic variables across many varied clinical settings. These metabolites are excreted in urine and represent diverse metabolic pathways and tubular handling. Thus, our data can be used to select metabolites for a multi-analyte eGFR determination assay using mass spectrometry that potentially offers better accuracy and is less prone to non-GFR determinants than the current eGFR biomarkers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10932836PMC
http://dx.doi.org/10.1016/j.kint.2023.11.007DOI Listing

Publication Analysis

Top Keywords

candidate filtration
12
filtration markers
12
glomerular filtration
8
filtration rate
8
maximal joint
8
joint association
8
metabolites
8
demographic variables
8
dependence demographic
8
candidate
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!