Facile synthesis of ball-milling and oxalic acid co-modified sludge biochar to efficiently activate peroxymonosulfate for sulfamethoxazole degradation: O and surface-bound radicals.

J Hazard Mater

Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK. Electronic address:

Published: March 2024

A novel approach of ball milling and oxalic acid was employed to modify sludge-based biochar (BOSBC) to boost its activation performance for peroxymonosulfate (PMS) towards efficient degradation of sulfamethoxazole (SMX). 98.6% of SMX was eliminated by PMS/BOSBC system within 60 min. Furthermore, PMS/BOSBC system was capable of maintaining high removal rates for SMX (>88.8%) in a wide pH range from 3 to 9, and displayed a high tolerance to background electrolytes including inorganic ions and humic acid (HA). Quenching experiments, electron paramagnetic resonance (EPR) analysis, in-situ Raman characterization and PMS decomposition experiments confirmed that the non-radicals of O and surface-bound radicals were the main contributors to SMX degradation by PMS/BOSBC system. The results of ecotoxicity assessment illustrated that all transformed products (TPs) generated in PMS/BOSBC system were less toxic than that of SMX. After five reuse cycles, PMS/BOSBC system still maintained a high removal rate for SMX (77.8%). Additionally, PMS/BOSBC system exhibited excellent degradation performance for SMX in various real waters (Yangtze River water (76.5%), lake water (74.1%), tap water (86.5%), and drinking water (98.1%)). Overall, this study provided novel insights on non-metal modification for sludge-based biochar and non-radical mechanism, and offered a feasible approach for municipal sludge disposal.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2023.133026DOI Listing

Publication Analysis

Top Keywords

pms/bosbc system
24
oxalic acid
8
surface-bound radicals
8
sludge-based biochar
8
high removal
8
smx
7
pms/bosbc
6
system
6
facile synthesis
4
synthesis ball-milling
4

Similar Publications

Facile synthesis of ball-milling and oxalic acid co-modified sludge biochar to efficiently activate peroxymonosulfate for sulfamethoxazole degradation: O and surface-bound radicals.

J Hazard Mater

March 2024

Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK. Electronic address:

A novel approach of ball milling and oxalic acid was employed to modify sludge-based biochar (BOSBC) to boost its activation performance for peroxymonosulfate (PMS) towards efficient degradation of sulfamethoxazole (SMX). 98.6% of SMX was eliminated by PMS/BOSBC system within 60 min.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!