We have developed quantitative toxicity prediction models for organic pesticides of agricultural importance considering different fish species using a novel quantitative Read-across structure-activity relationship (q-RASAR) approach. The current study uses experimental (Log 1/LC50) data of organic pesticides to various fish species, including Rainbow trout (RT: Oncorhynchus mykiss: 715 data points), Lepomis (LP: Lepomis macrochirus: 136 data points), and Miscellaneous (Pimephales promelas, Brachydanio rerio: 226 data points). This study has also discussed the validation of the developed models and the analysis of structural features that are important for aquatic toxicity towards fishes. The read-across-derived similarity, error, and concordance measures (RASAR descriptors) have been extracted from the preliminary 0D-2D descriptors; the combined pool of RASAR and selected 0D-2D descriptors have been used to develop the final models by employing partial least squares algorithm. All the q-RASAR models are acceptable in terms of goodness of fit, robustness, and external predictivity, superseding the quality of the respective QSAR models, as seen from the computed validation metrics. The q-RASAR is an effective approach that has the potential to be used as a good alternative way to enhance external predictivity, interpretability, and transferability for aquatic toxicity prediction as well as ecotoxicity potential identification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2023.106776DOI Listing

Publication Analysis

Top Keywords

aquatic toxicity
12
organic pesticides
12
fish species
12
data points
12
quantitative read-across
8
read-across structure-activity
8
structure-activity relationship
8
relationship q-rasar
8
q-rasar approach
8
pesticides fish
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!