A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Spatio-temporal layers based intra-operative stereo depth estimation network via hierarchical prediction and progressive training. | LitMetric

Spatio-temporal layers based intra-operative stereo depth estimation network via hierarchical prediction and progressive training.

Comput Methods Programs Biomed

Politecnico di Milano, Department of Electronics, Information and Bioengineering, Milano, 20133, Italy; European Institute of Oncology, Department of Urology, IRCCS, Milan, 20141, Italy.

Published: February 2024

Background And Objective: Safety of robotic surgery can be enhanced through augmented vision or artificial constraints to the robotl motion, and intra-operative depth estimation is the cornerstone of these applications because it provides precise position information of surgical scenes in 3D space. High-quality depth estimation of endoscopic scenes has been a valuable issue, and the development of deep learning provides more possibility and potential to address this issue.

Methods: In this paper, a deep learning-based approach is proposed to recover 3D information of intra-operative scenes. To this aim, a fully 3D encoder-decoder network integrating spatio-temporal layers is designed, and it adopts hierarchical prediction and progressive learning to enhance prediction accuracy and shorten training time.

Results: Our network gets the depth estimation accuracy of MAE 2.55±1.51 (mm) and RMSE 5.23±1.40 (mm) using 8 surgical videos with a resolution of 1280×1024, which performs better compared with six other state-of-the-art methods that were trained on the same data.

Conclusions: Our network can implement a promising depth estimation performance in intra-operative scenes using stereo images, allowing the integration in robot-assisted surgery to enhance safety.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2023.107937DOI Listing

Publication Analysis

Top Keywords

depth estimation
20
spatio-temporal layers
8
hierarchical prediction
8
prediction progressive
8
intra-operative scenes
8
depth
5
estimation
5
layers based
4
intra-operative
4
based intra-operative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!