DNA four-way junction-driven dual-rolling circle amplification sandwich-type aptasensor for ultra-sensitive and specific detection of tumor-derived exosomes.

Biosens Bioelectron

Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China; College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China. Electronic address:

Published: February 2024

There is an urgent need to accurately quantify tumor-derived exosomes, which have emerged as promising non-invasive tumor diagnostic biomarkers. Herein, a bispecific-aptamer sandwich-type gold nanoparticle-modified electrochemical aptasensor was developed based on a four-way junction (4-WJ)-triggered dual rolling circle amplification (RCA)-assisted methylene blue (MB)/G-quadruplex strategy for extremely specific and sensitive exosome detection. This aptamer/exosome/aptamer sandwich-type design contained a CD63-specific aptamer and a cancerous mucin-1 (MUC1) protein-specific aptamer. The CD63 aptamer modified on a gold electrode captured exosomes, and then the sandwich-type aptasensor was formed with the addition of the MUC1 aptamer. The MUC1 aptamer's 3'-end sequence facilitated the formation of 4-WJ, assisted by a molecular beacon probe and a binary DNA probe. Subsequently, a dual-RCA reaction was triggered by binding to two cytosine-rich circle DNA templates at both ends of 4-WJ. Ultimately, dual-RCA products containing multiple G-quadruplex conformations were generated with the assistance of K to trap abundant MB indicators and amplify electrochemical signals. The aptasensor exhibited high specificity, sensitivity, repeatability, and stability toward MCF-7-derived exosomes, with a detection limit of 20 particles/mL and a linear range of 1 × 10 to 1 × 10 particles/mL. Moreover, it showed excellent applicability in clinical settings to recover exosomes in normal human serum. Our aptasensor is anticipated to serve as a versatile platform for detecting various specific aptamer-based targets in biomedical and bioanalytical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2023.115841DOI Listing

Publication Analysis

Top Keywords

circle amplification
8
sandwich-type aptasensor
8
tumor-derived exosomes
8
aptasensor
5
exosomes
5
dna four-way
4
four-way junction-driven
4
junction-driven dual-rolling
4
dual-rolling circle
4
sandwich-type
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!