A point mutation of RPM1 triggers persistent immune response that induces leaf premature senescence in wheat, providing novel information of immune responses and leaf senescence. Leaf premature senescence in wheat (Triticum aestivum L.) is one of the most common factors affecting the plant's development and yield. In this study, we identified a novel wheat mutant, yellow leaf and premature senescence (ylp), which exhibits yellow leaves and premature senescence at the heading and flowering stages. Consistent with the yellow leaves phenotype, ylp had damaged and collapsed chloroplasts. Map-based cloning revealed that the phenotype of ylp was caused by a point mutation from Arg to His at amino acid 790 in a plasma membrane-localized protein resistance to Pseudomonas syringae pv. maculicola 1 (RPM1). The point mutation triggered excessive immune responses and the upregulation of senescence- and autophagy-associated genes. This work provided the information for understanding the molecular regulatory mechanism of leaf senescence, and the results would be important to analyze which mutations of RPM1 could enable plants to obtain immune activation without negative effects on plant growth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00122-023-04499-4 | DOI Listing |
Aging is the major risk factor for most human diseases and represents a major socio-economical challenge for modern societies. Despite its importance, the process of aging remains poorly understood. Epigenetic dysregulation has been proposed as a key driver of the aging process.
View Article and Find Full Text PDFEnviron Health Prev Med
January 2025
Health and Environmental Risk Division, National Institute for Environmental Studies.
Background: Chronic arsenite exposure has been known to induce cancer in various organs; however, the underlying mechanisms remain elusive. The characteristic feature of carcinogenesis due to arsenic exposure is that the disease develops after a prolonged latent period, even after cessation of exposure. Our previous study revealed that arsenite exposure induces premature senescence in hepatic stellate cells and suggests that the senescence-associated secretory phenotype (SASP) factors from the senescent cells promote hepatic carcinogenesis.
View Article and Find Full Text PDFJ Racial Ethn Health Disparities
January 2025
Center for Population Health Sciences, Stanford University School of Medicine, Stanford, CA, USA.
Recent research shows a significant link between race-ethnicity and income concentration and premature death rates in the U.S. However, most studies focus on Black-White residential concentration, overlooking racial-ethnic diversity.
View Article and Find Full Text PDFJ Cell Physiol
January 2025
Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.
The aging process often leads to immune-related diseases, including infections, tumors, and autoimmune disorders. Recently, researchers identified a special subpopulation of B cells in elderly female mice that increases with age and accumulates prematurely in mouse models of autoimmune diseases or viral infections; these B cells are known as age-related B cells (ABCs). These cells possess distinctive cell surface phenotypes and transcriptional characteristics, and the cell population is widely recognized as CD11cCD11bT-betCD21CD23 cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!