Breast cancer is one of the most common types of cancer in women and it produces a huge amount of death rate in the world. Early recognition is lessening its impact. The early recognition of breast cancer could convince patients to receive surgical therapy, which will significantly improve the chance of restoration. This information is used by the machine learning technique to find links between them and appraise our forecasts of fresh occurrences. Later recognition of breast cancer can lead to death. An accurate prescient framework for breast cancer prediction is urgently needed in the current era. In order to accomplish the objective, an adaptive ensemble model is proposed for breast cancer prognosis prediction using data. At the initial stage, the raw data are fetched from benchmark datasets. It is then followed by data cleaning and preprocessing. Subsequently, the pre-processed data is fed into the Improved Variational Autoencoder (IVAE), where the deep features are extracted. Finally, the resultant features are given as input to the Ensemble-based Serial Cascaded Attention Network (ESCANet), which is built with Deep Temporal Convolution Network (DTCN), Bi-directional Long Short-Term Memory (BiLSTM), and Recurrent Neural Network (RNN). The effectiveness of the model is validated and compared with conventional methodologies. Therefore, the results elucidate that the proposed methodology achieves extensive results; thus, it increases the system's efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10255842.2023.2280883 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!