Per- and polyfluoroalkyl substances (PFAS) are anthropogenic compounds developed for various applications; some are connected to adverse health impacts including immunosuppression and higher susceptibility to some cancers. Current PFAS remediation treatments from aqueous sources include granular activated carbon (GAC) adsorption, membrane separation, and anion-exchange resin (AER) removal. Each has specific disadvantages, hence the need for a new and efficient technology. Herein, acrylamide-based hydrogel composites were synthesized with powdered activated carbon (PAC) and characterized to determine their affinity for PFAS. Physicochemical characterization included Fourier-Transform infrared spectroscopy (FTIR) to identify chemical composition, thermogravimetric analysis (TGA) to confirm PAC loading percentage, and aqueous swelling studies to measure the effect of crosslinking density. FTIR showed successful conversion of carbonyl and amine groups, and TGA analysis confirmed the presence of PAC within the network. Surface characterization also confirmed carbon-rich areas within composite networks, and the swelling ratio decreased with increasing crosslinking density. Finally, sorption of PFAS was detected via liquid chromatography with tandem mass spectrometry (LC-MS/MS), with removal efficiencies of up to 98% for perfluorooctanoic sulfonic acid (PFOS) and 96% for perfluorooctanoic acid (PFOA). The developed hydrogel composites exhibited great potential as advanced materials with tunable levers that can increase affinity towards specific compounds in water.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675425PMC
http://dx.doi.org/10.3390/polym15224384DOI Listing

Publication Analysis

Top Keywords

hydrogel composites
12
activated carbon
12
powdered activated
8
crosslinking density
8
development polyacrylamide-based
4
polyacrylamide-based hydrogel
4
composites powdered
4
carbon controlled
4
controlled sorption
4
sorption pfoa
4

Similar Publications

Biodegradable PHBVHHx-PEG/Collagen Hydrogel Scaffolds for Cartilage Repair.

Tissue Eng Part A

January 2025

Department of Orthopedic Surgery and Orthopedic Research Institute, Sports Medicine Center, West China Hospital, Sichuan University, Chengdu, China.

Recently, there has been increased attention on the treatment of cartilage repair. Overall, we constructed PHBVHHx-COL, a composite hydrogel of PHBVHHx-co-PEG and collagen, and evaluated its cartilage repair efficacy through and studies using hydrogel loaded with peripheral blood-derived mesenchymal stem cells (PBMSCs). Rheological properties and compressive mechanical properties of the hydrogels were systematically evaluated.

View Article and Find Full Text PDF

Tunable Bicontinuous Macroporous Cell Culture Scaffolds via Kinetically Controlled Phase Separation.

Adv Mater

January 2025

Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland.

3D scaffolds enable biological investigations with a more natural cell conformation. However, the porosity of synthetic hydrogels is often limited to the nanometer scale, which confines the movement of 3D encapsulated cells and restricts dynamic cell processes. Precise control of hydrogel porosity across length scales remains a challenge and the development of porous materials that allow cell infiltration, spreading, and migration in a manner more similar to natural ECM environments is desirable.

View Article and Find Full Text PDF

The specific ion effect (SIE), the control of polymer solubility in aqueous solutions by the added ions, has been a phenomenon known for more than a century. The seemingly simple nature of the ion-polymer-water interactions can lead to complex behaviors, which have also been exploited in many applications in biochemistry, electrochemistry, and energy harvesting. Here, we show an emerging diversification of actuation behaviors in "salty" hydrogel and hydrogel-paper actuators.

View Article and Find Full Text PDF

Oxygenous and biofilm-targeted nanosonosensitizer anchored with Pt nanozyme and antimicrobial peptide in the gelatin/sodium alginate hydrogel for infected diabetic wound healing.

Int J Biol Macromol

December 2024

Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China. Electronic address:

Sonodynamic therapy is an emerging therapeutic approach for combating bacterial infections. However, the characteristics of hypoxia, high HO microenvironment, and the formation of persistent biofilms in diabetic wound sites limit its efficacy in this field. To address these issues, we developed a multifunctional antibacterial hydrogel dressing PPCN@Pt-AMPs/HGel with the cross-linked gelatin and sodium alginate as the matrix, where the nanosonosensitizer PCN-224 was decorated with the oxygen-generating Pt nanoenzyme and further coupled with a biofilm-targeting antimicrobial peptide via an interacting polydopamine layer.

View Article and Find Full Text PDF

The versatile properties of carbohydrate polymers make them a relevant, promising precursor to design innovative materials for use in biomedical applications. Recent research mainly focuses on the development of the polysaccharide based functional materials. Hydrogel derived materials are a source of great motivation for the development of drug delivery (DD) carriers with inherent therapeutic potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!