The radiological protection has the purpose of safeguarding the physical well-being of the user, preventing exposure to detrimental levels of ionizing radiation. This study introduces a novel, cost-effective category of lead-free elastomeric material designed for radiation shielding. The filler compounds utilized are notably lighter than conventional lead-based materials, enhancing user ergonomics during application. They comprise of a blend of barium sulfate combined or not with magnesium oxide with addition-cure liquid silicone rubber. To ensure the effectiveness of the radiation shielding, X-ray transmission measurements were performed for the different thicknesses of the materials and the results compared with Monte Carlo simulations. Additionally, the physical properties of the new materials, such as density, homogeneity, tensile strength, viscosity, and wettability, were also evaluated. The findings indicate that both materials fulfill the requirement for application in radiation protection garments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675358PMC
http://dx.doi.org/10.3390/polym15224382DOI Listing

Publication Analysis

Top Keywords

radiation shielding
12
barium sulfate
8
magnesium oxide
8
liquid silicone
8
silicone rubber
8
radiation
5
development lead-free
4
lead-free radiation
4
shielding material
4
material utilizing
4

Similar Publications

Eggshell-derived particle composites with epoxy resin for enhanced radiation shielding applications.

Radiat Environ Biophys

December 2024

Faculty of Radiological Technology, Rangsit University, Pathumthani, 12000, Thailand.

This study explores the development and efficacy of eggshell-derived particle composites with epoxy resin for enhanced radiation shielding applications. Eggshells, primarily composed of calcium carbonate, were processed into particles of three sizes: small, medium, and large. These particles were incorporated into epoxy resin at a 50% weight ratio and characterized using a Laser Particle Size Distribution Analyzer.

View Article and Find Full Text PDF

Advances in nanomaterials for radiation protection in the aerospace industry: a systematic review.

Nanotechnology

December 2024

CCTS/DFQM, UFSCar - Campus Sorocaba, Rod. João Leme dos Santos km 110 - SP-264 Bairro do Itinga - Sorocaba CEP 18052-780, Sorocaba, 18052-780, BRAZIL.

Nanomaterials stand out for their exceptional properties and innovative potential, especially in applications that protect against space radiation. They offer an innovative approach to this challenge, demonstrating notable properties of radiation absorption and scattering, as well as flexibility and lightness for the development of protective clothing and equipment. This review details the use of polymeric materials, such as polyimides (PIs), which are efficient at attenuating ultraviolet (UV) radiation and atomic oxygen (AO).

View Article and Find Full Text PDF

The bacterium responsible for Lyme disease, , accumulates high levels of manganese without iron and possesses a polyploid genome, characteristics suggesting potential extreme resistance to radiation. Contrary to expectations, we report that wild-type B31 cells are radiosensitive, with a gamma-radiation survival limit for 10 wild-type cells of <1 kGy. Thus, we explored radiosensitivity through electron paramagnetic resonance (EPR) spectroscopy by quantitating the fraction of Mn present as antioxidant Mn metabolite complexes (H-Mn).

View Article and Find Full Text PDF

Background: Application of the nanomaterials to preparing X-ray shields and successfully treating multiresistant microorganisms has attracted great attention in modern life.

Objective: This study aimed to prepare flexible silicone-based matrices containing BiO, PbO, or BiO/PbO nanoparticles and select a cost-effective, cytocompatible, and antibacterial/antifungal X-ray shield in clinical radiography.

Material And Methods: In this experimental study, we prepared the nanoparticles by the modified biosynthesis method and fabricated the X-ray shields containing 20 wt% of the nanoparticles.

View Article and Find Full Text PDF

Platform development toward ultra-intense laser-based simultaneous hard x-ray and MeV neutron multimodal radiography.

Rev Sci Instrum

December 2024

Lawrence Livermore National Laboratory, Livermore, California 94550, USA.

Ultra-intense short-pulse lasers interacting with matter are capable of generating exceptionally bright secondary radiation sources. The short pulse duration (picoseconds to nanoseconds), small source size (sub-mm), and comparable high peak flux to conventional single particle sources make them an attractive source for radiography using a combination of particle species, known as multimodal imaging. Simultaneous x-ray and MeV neutron imaging of multi-material objects can yield unique advantages for material segmentation and identification within the full sample.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!