Ammonium toxicity in macrophytes reduces growth and development due to a disrupted metabolism and high carbon requirements for internal ammonium detoxification. To provide more molecular support for ammonium detoxification in the above-ground and below-ground parts of , we separated (using hermetic bags) the aqueous medium surrounding the below-ground from that surrounding the above-ground and explored the genes in these two regions. The results showed an upregulation of asparagine synthetase genes under high ammonium concentrations. Furthermore, the transcriptional down and/or upregulation of other genes involved in nitrogen metabolism, including glutamate dehydrogenase, ammonium transporter, and aspartate aminotransferase in above-ground and below-ground parts were crucial for ammonium homeostasis under high ammonium concentrations. The results suggest that, apart from the primary pathway and alternative pathway, the asparagine metabolic pathway plays a crucial role in ammonium detoxification in macrophytes. Therefore, the complex genetic regulatory network in contributes to its ammonium tolerance, and the above-ground part is the most important in ammonium detoxification. Nevertheless, there is a need to incorporate an open-field experimental setup for a conclusive picture of nitrogen dynamics, toxicity, and the molecular response of in the natural environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675724PMC
http://dx.doi.org/10.3390/plants12223875DOI Listing

Publication Analysis

Top Keywords

ammonium detoxification
16
ammonium
11
above-ground below-ground
8
below-ground parts
8
high ammonium
8
ammonium concentrations
8
transcriptome analysis
4
analysis macrophytes'
4
macrophytes' response
4
response ammonium
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!