Design and Construction of the Optical Bench Interferometer for the Taiji Program.

Sensors (Basel)

National Microgravity Laboratory (NML), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.

Published: November 2023

A kind of full-function two-sided optical bench interferometer (OBI) is designed to meet the practical requirements of the Taiji Program for space gravitational wave detection. The main optical paths are arranged on the A-side for transmission and interference, and other optical paths and electronic devices are placed on the B-side. According to the design scheme, we successfully constructed two OBIs by using hydrogen-oxygen catalytic stress-free bonding technology. When the OBI is installed and adjusted, the position and Angle error of the interference beam are controlled within 30 μm and 50 μrad through the self-designed precision mechanical clamping mechanism and beam position measuring device. The built OBI was placed on the vibration isolation platform in the vacuum tank for the stability test. The test results show that the noise of the OBI is less than 10 pm/√Hz in the frequency band of 0.1 Hz to 1 Hz, which meets the noise budget requirements of the Taiji Pathfinder in the middle- and high-frequency band.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675380PMC
http://dx.doi.org/10.3390/s23229141DOI Listing

Publication Analysis

Top Keywords

optical bench
8
bench interferometer
8
taiji program
8
requirements taiji
8
optical paths
8
design construction
4
optical
4
construction optical
4
interferometer taiji
4
program kind
4

Similar Publications

This study aimed to determine the impact of caffeine (200 mg), beta-alanine (3 g), and their combination on intraocular pressure (IOP), ocular perfusion pressure (OPP), and mean arterial pressure (MAP) at rest and after resistance training. Twenty young men (age = 23.4 ± 4.

View Article and Find Full Text PDF

Targeting the issues of seed leakage and cutting segment adhesion due to poor seed feeding and cutting in real-time seed-cutting cassava planters, this study developed a seeding quality monitoring system. Based on the structure and working principle of the seed cutting and discharging device, the installation methods of the matrix fiber optic sensor and rotary encoder were determined. By combining the operational characteristics of the planter's ground wheel drive with seed cutting and seed dropping, a monitoring model correlating the sowing parameters with seed dropping time was established; a monitoring window was created by extracting and processing the rotary encoder pulse signal, and the number of seeds sown after each opposing cutter's operation was calculated based on the pulse width information within the monitoring window.

View Article and Find Full Text PDF

We present a technique called photoacoustic vector-flow (PAVF) to quantify the speed and direction of flowing optical absorbers at each pixel from acoustic-resolution PA images. By varying the receiving angle at each pixel in post-processing, we obtain multiple estimates of the phase difference between consecutive frames. These are used to solve the overdetermined photoacoustic Doppler equation with a least-squares approach to estimate a velocity vector at each pixel.

View Article and Find Full Text PDF

Optimization of Soft X-Ray Fresnel Zone Plate Fabrication Through Joint Electron Beam Lithography and Cryo-Etching Techniques.

Nanomaterials (Basel)

November 2024

Nanotechnology Group, USAL-Nanolab, Departamento de Física Fundamental, Universidad de Salamanca (USAL), E-37008 Salamanca, Spain.

The ability to manufacture complex 3D structures with nanometer-scale resolution, such as Fresnel Zone Plates (FZPs), is crucial to achieve state-of-the-art control in X-ray sources for use in a diverse range of cutting-edge applications. This study demonstrates a novel approach combining Electron Beam Lithography (EBL) and cryoetching to produce silicon-based FZP prototypes as a test bench to assess the strong points and limitations of this fabrication method. Through this method, we obtained FZPs with 100 zones, a diameter of 20 µm, and an outermost zone width of 50 nm, resulting in a high aspect ratio that is suitable for use across a range of photon energies.

View Article and Find Full Text PDF

Visually relevant on-bench through-focus analysis of intraocular lenses.

Biomed Opt Express

December 2024

Laboratorio de Óptica, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain.

Cataract surgery involves the implantation of an intraocular lens (IOL) to replace the opacified crystalline lens. Monofocal IOLs, the most common type, are intended to have the eye in focus at a given distance, usually at infinity. Simultaneous vision IOLs (SVIOLs) and extended depth of focus (EDOF) aim to minimize postoperative dependence on spectacles by providing either multiple foci or an extended depth of focus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!