A CMOS Image Sensor Dark Current Compensation Using In-Pixel Temperature Sensors.

Sensors (Basel)

EWI Faculty, Electronic Instrumentation Laboratory, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands.

Published: November 2023

This paper presents a novel technique for dark current compensation of a CMOS image sensor (CIS) by using in-pixel temperature sensors (IPTSs) over a temperature range from -40 °C to 90 °C. The IPTS makes use of the 4T pixel as a temperature sensor. Thus, the 4T pixel has a double functionality, either as a pixel or as a temperature sensor. Therefore, the dark current compensation can be carried out locally by generating an artificial dark reference frame from the temperature measurements of the IPTSs and the temperature behavior of the dark current (previously calibrated). The artificial dark current frame is subtracted from the actual images to reduce/cancel the dark signal level of the pictures. In a temperature range from -40 °C to 90 °C, results show that the temperature sensors have an average temperature coefficient (TC) of 1.15 mV/°C with an inaccuracy of ±0.55 °C. Parameters such as conversion gain, gain of the amplifier, and ADC performance have been analyzed over temperature. The dark signal can be compensated in the order of 80% in its median value, and the nonuniformity is reduced in the order of 55%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674984PMC
http://dx.doi.org/10.3390/s23229109DOI Listing

Publication Analysis

Top Keywords

dark current
20
current compensation
12
temperature sensors
12
temperature
11
cmos image
8
image sensor
8
dark
8
sensor dark
8
in-pixel temperature
8
iptss temperature
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!