The existing ultrasonic thickness measurement systems require high sampling frequencies for echo signal acquisition, leading to complex circuit designs and high costs. Moreover, extracting the characteristics of ultrasonic echo signals for accurate thickness measurement poses significant challenges. To address these issues, this paper proposes a method that utilizes conventional sampling frequencies to acquire high-frequency ultrasonic echo signals, overcoming the limitations of high-frequency data acquisition imposed by the Nyquist-Shannon sampling theorem. By employing an improved sampling reconstruction technique, the multi-cycle sampling signals are reconstructed and rearranged within a single cycle, effectively increasing the equivalent sampling frequency. Additionally, a combination of coarse estimation using fast Fourier transform (FFT) and precise phase extraction using the moving sine fitting algorithm is proposed for accurate thickness measurement, resolving the limitations of common thickness measurement methods such as peak detection, envelope detection, and Hilbert autocorrelation in terms of low measurement accuracy. Experimental results obtained from thickness measurements on 45 steel ultrasonic test blocks within the range of 3 mm to 20 mm indicate a measurement error of ±0.01 mm, while for thicknesses ranging from 1 mm to 50 mm, the measurement error is ±0.05 mm.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675015 | PMC |
http://dx.doi.org/10.3390/s23229072 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!