Simultaneous Measurement of Flow Velocity and Electrical Conductivity of a Liquid Metal Using an Eddy Current Flow Meter in Combination with a Look-Up-Table Method.

Sensors (Basel)

Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany.

Published: November 2023

The Eddy Current Flow Meter (ECFM) is a commonly employed inductive sensor for assessing the local flow rate or flow velocity of liquid metals with temperatures up to 700 ∘C. One limitation of the ECFM lies in its dependency on the magnetic Reynolds number for measured voltage signals. These signals are influenced not only by the flow velocity but also by the electrical conductivity of the liquid metal. In scenarios where temperature fluctuations are significant, leading to corresponding variations in electrical conductivity, it becomes imperative to calibrate the ECFM while concurrently monitoring temperature to discern the respective impacts of flow velocity and electrical conductivity on the acquired signals. This paper introduces a novel approach that enables the concurrent measurement of electrical conductivity and flow velocity, even in the absence of precise knowledge of the liquid metal's conductivity or temperature. This method employs a Look-Up-Table methodology. The feasibility of this measurement technique is substantiated through numerical simulations and further validated through experiments conducted on the liquid metal alloy GaInSn at room temperature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675461PMC
http://dx.doi.org/10.3390/s23229018DOI Listing

Publication Analysis

Top Keywords

flow velocity
20
electrical conductivity
20
velocity electrical
12
liquid metal
12
flow
8
conductivity liquid
8
eddy current
8
current flow
8
flow meter
8
conductivity
6

Similar Publications

The study presents a numerical parametric investigation of flow structures in channels with a longitudinal-radial profile zR = Const and a spherical dome at the base. The goal of the study was to examine the flow structures in these channels depending on the exponent N of the profile and the height of the dome, to determine the conditions that provide optimal centripetal swirling flow, analogous to blood flow in the heart chambers and major vessels. The investigation was conducted using a comparative analysis of flow structures in channel configurations zR = Const, carried out in two stages.

View Article and Find Full Text PDF

Key Structural Features of Microvascular Networks Leading to the Formation of Multiple Equilibria.

Bull Math Biol

January 2025

Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Woodstock Rd, Oxford, Oxfordshire, OX2 6GG, UK.

We analyse mathematical models of blood flow in two simple vascular networks in order to identify structural features that lead to the formation of multiple equilibria. Our models are based on existing rules for blood rheology and haematocrit splitting. By performing bifurcation analysis on these simple network flow models, we identify a link between the changing flow direction in key vessels and the existence of multiple equilibria.

View Article and Find Full Text PDF

Aims: The Tpeak-Tend interval on electrocardiogram may be a predictor of worse outcomes in Takotsubo syndrome (TTS), but the mechanisms have not been fully determined. This study aimed to investigate the relationships between the corrected Tpeak-Tend (cTp-e) interval and coronary microvascular-dysfunction (CMD) assessed by the angiography-derived index of microvascular resistance (Angio-IMR) and the in-hospital prognosis in patients with TTS.

Methods And Results: We retrospectively evaluated 111 consecutive patients admitted for TTS who underwent coronary angiography at Kindai University Hospital from October 2009 to July 2023.

View Article and Find Full Text PDF

Packed columns are commonly used in post-combustion processes to capture CO emissions by providing enhanced contact area between a CO-laden gas and CO-absorbing solvent. To study and optimize solvent-based post-combustion carbon capture systems (CCSs), computational fluid dynamics (CFD) can be used to model the liquid-gas countercurrent flow hydrodynamics in these columns and derive key determinants of CO-capture efficiency. However, the large design space of these systems hinders the application of CFD for design optimization due to its high computational cost.

View Article and Find Full Text PDF

This research presents a numerical study over the unsteady natural convection of an electrically conducting fluid in an open-ended vertical parallel plate microchannel under uniform and asymmetric heat flux subjected to a uniform lateral magnetic field. Slip velocity, as well as temperature jump at channel walls, are modeled using a first-order model. The effects of Knudsen number)(, heat flux ratio)rq(, Grashof number)(, and Hartmann number)M(on mass flow rate, the maximum temperature of the wall, and average Nusselt () as a function of time are discussed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!