Latent fingerprints are a significant carrier of information for a court expert. To detect this type of forensic trace, what is necessary is a method that is easy to use, compact, and versatile. The research aimed to investigate the physicochemical properties of luminescent substances of donor-π-acceptor systems in terms of their potential use in detecting hidden fingerprints. During the research, a group of fluorene compounds consisting of the (-CH=C(CN)(COOR)) moiety was designed and successfully synthesized. The optical, electrochemical, and aggregation-induced emission properties were studied. The aggregation-induced emission of compounds has been studied in the mixture of THF (as a good solvent) and water (as a poor solvent) with different water fractions ranging from 0% to 99%. Due to the molecular structure, substances showed different affinities to organic traces. As a result, it was noticed that all compounds showed the AIE phenomenon, while during tests on latent fingerprints, it was observed that two substances had particularly forward-looking features in this field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674358 | PMC |
http://dx.doi.org/10.3390/molecules28227597 | DOI Listing |
J Hazard Mater
December 2024
Department of Chemistry, National Sun Yat-sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan; Center for Nanoscience & Nanotechnology, National Sun Yat-sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, No.100, Shiquan 1st Rd., Kaohsiung 80708, Taiwan. Electronic address:
Food freshness monitoring and volatile amine detection are key to food safety. In this study, we demonstrated the applicability of mixed-valence rhenium oxide quantum dots (MV-ReOQDs), synthesized via the hydrothermal reaction of α-cyclodextrin and rhenium ion precursors, in triethylamine (TEA) sensing. Spectroscopic correlation techniques showed that the developed MV-ReOQDs possessed mixed-valent rhenium, α-cyclodextrin as capped ligand, partially carbonized surface, and amorphous phase structure.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.
Aggregation-induced emission (AIE)-active fluorescent hydrogel materials have found extensive applications in soft robotics, wearable electronics, information encryption, and biomedicine. Nevertheless, it continues to be difficult to create hydrogels that are both highly luminescent and possess strong mechanical capabilities. This study introduces a combined approach of prestretching and solvent exchange to create anisotropic luminous hydrogels made of poly(methacrylic acid-methacrylamide).
View Article and Find Full Text PDFChem Asian J
January 2025
University of Shanghai for Science and Technology, School of Materials and Chemistry, Shanghai, CHINA.
Ln-MOFs, composed of lanthanide ions and functional organic ligands, are porous materials with tunable structures and unique luminescent properties. However, the interplay between ligand AIE properties and the framework's "antenna effect" on MOF morphology is understudied. Here, Tb-D-Cam-TPTB was synthesized via solvothermal method using TPTB (persulfurated arene) as the primary ligand, D-Cam as the auxiliary ligand, and Tb3+ as the metal ion.
View Article and Find Full Text PDFACS Nano
January 2025
Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China.
Strategies to acquire high-efficiency luminogens that emit in the second near-infrared (NIR-II, 1000-1700 nm) range are still rare due to the impediment of the energy gap law. Herein, a feasible strategy is pioneered by installing large-volume encumbrances in a confined space to intensify the repulsive interactions arising from overlapping electron densities. The experimental results, including smaller coordinate displacement, reduced reorganization energy, and suppressed internal conversion, demonstrate that the repulsive interactions assist in the inhibition of radiationless deactivation.
View Article and Find Full Text PDFLangmuir
January 2025
Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
Controllable transformation between the bolaamphiphilic molecule assemblies with different morphological nanostructures represents an exciting new direction for materials. However, there are still significant challenges for the quantitative detection and real-time monitoring of a controllable nanoself-assembly process due to insufficient measuring methods. Herein, we propose a new and effective fluorescence technology for realizing quantitative detection of a controllable conversion process of one-dimensional (1D)/two-dimensional (2D) nanoassemblies by introducing AIEgens as the fluorescence signal part.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!