Simple Donor-π-Acceptor Compounds Exhibiting Aggregation-Induced Emission as Hidden Fingerprints Detecting Agents.

Molecules

Institute of Chemistry, Faculty of Mathematics, Physics and Chemistry, University of Silesia, Szkolna 9, 40-007 Katowice, Poland.

Published: November 2023

AI Article Synopsis

  • Latent fingerprints serve as crucial evidence in court, necessitating a user-friendly, compact, and adaptable detection method.
  • The research focused on exploring luminescent donor-π-acceptor systems to improve the detection of hidden fingerprints, involving the synthesis of specific fluorene compounds.
  • The study found that these compounds exhibited unique properties based on their molecular structure, with two showing particularly promising characteristics for latent fingerprint detection.

Article Abstract

Latent fingerprints are a significant carrier of information for a court expert. To detect this type of forensic trace, what is necessary is a method that is easy to use, compact, and versatile. The research aimed to investigate the physicochemical properties of luminescent substances of donor-π-acceptor systems in terms of their potential use in detecting hidden fingerprints. During the research, a group of fluorene compounds consisting of the (-CH=C(CN)(COOR)) moiety was designed and successfully synthesized. The optical, electrochemical, and aggregation-induced emission properties were studied. The aggregation-induced emission of compounds has been studied in the mixture of THF (as a good solvent) and water (as a poor solvent) with different water fractions ranging from 0% to 99%. Due to the molecular structure, substances showed different affinities to organic traces. As a result, it was noticed that all compounds showed the AIE phenomenon, while during tests on latent fingerprints, it was observed that two substances had particularly forward-looking features in this field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674358PMC
http://dx.doi.org/10.3390/molecules28227597DOI Listing

Publication Analysis

Top Keywords

aggregation-induced emission
12
hidden fingerprints
8
latent fingerprints
8
solvent water
8
simple donor-π-acceptor
4
compounds
4
donor-π-acceptor compounds
4
compounds exhibiting
4
exhibiting aggregation-induced
4
emission hidden
4

Similar Publications

Aggregation-induced emission and absorption enhancement of mixed-valent rhenium oxide quantum dots by triethylamine: Implications for food safety monitoring.

J Hazard Mater

December 2024

Department of Chemistry, National Sun Yat-sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan; Center for Nanoscience & Nanotechnology, National Sun Yat-sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, No.100, Shiquan 1st Rd., Kaohsiung 80708, Taiwan. Electronic address:

Food freshness monitoring and volatile amine detection are key to food safety. In this study, we demonstrated the applicability of mixed-valence rhenium oxide quantum dots (MV-ReOQDs), synthesized via the hydrothermal reaction of α-cyclodextrin and rhenium ion precursors, in triethylamine (TEA) sensing. Spectroscopic correlation techniques showed that the developed MV-ReOQDs possessed mixed-valent rhenium, α-cyclodextrin as capped ligand, partially carbonized surface, and amorphous phase structure.

View Article and Find Full Text PDF

High-Strength Anisotropic Fluorescent Hydrogel Based on Solvent Exchange for Patterning.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.

Aggregation-induced emission (AIE)-active fluorescent hydrogel materials have found extensive applications in soft robotics, wearable electronics, information encryption, and biomedicine. Nevertheless, it continues to be difficult to create hydrogels that are both highly luminescent and possess strong mechanical capabilities. This study introduces a combined approach of prestretching and solvent exchange to create anisotropic luminous hydrogels made of poly(methacrylic acid-methacrylamide).

View Article and Find Full Text PDF

Ln-MOFs, composed of lanthanide ions and functional organic ligands, are porous materials with tunable structures and unique luminescent properties. However, the interplay between ligand AIE properties and the framework's "antenna effect" on MOF morphology is understudied. Here, Tb-D-Cam-TPTB was synthesized via solvothermal method using TPTB (persulfurated arene) as the primary ligand, D-Cam as the auxiliary ligand, and Tb3+ as the metal ion.

View Article and Find Full Text PDF

Intramolecular Repulsive Interactions Enable High Efficiency of NIR-II Aggregation-Induced Emission Luminogens for High-Contrast Glioblastoma Imaging.

ACS Nano

January 2025

Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China.

Strategies to acquire high-efficiency luminogens that emit in the second near-infrared (NIR-II, 1000-1700 nm) range are still rare due to the impediment of the energy gap law. Herein, a feasible strategy is pioneered by installing large-volume encumbrances in a confined space to intensify the repulsive interactions arising from overlapping electron densities. The experimental results, including smaller coordinate displacement, reduced reorganization energy, and suppressed internal conversion, demonstrate that the repulsive interactions assist in the inhibition of radiationless deactivation.

View Article and Find Full Text PDF

Optimal Method to Realize Quantitative Detection of 1D and 2D Nanoassemblies Based on AIE-Active Bolaamphiphilic Molecules.

Langmuir

January 2025

Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.

Controllable transformation between the bolaamphiphilic molecule assemblies with different morphological nanostructures represents an exciting new direction for materials. However, there are still significant challenges for the quantitative detection and real-time monitoring of a controllable nanoself-assembly process due to insufficient measuring methods. Herein, we propose a new and effective fluorescence technology for realizing quantitative detection of a controllable conversion process of one-dimensional (1D)/two-dimensional (2D) nanoassemblies by introducing AIEgens as the fluorescence signal part.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!