The mechanical behavior, microstructures, as well as the crystallographic textures of the Ti57-Nb43 alloy were investigated on cylindrical specimens compressed at high temperatures, in the range of 700-1000 °C, and strain rates between 0.001 and 1.0 s. Hardening, followed by softening behaviors, were observed as a function of strain due to the occurrence of dynamic recrystallization/recovery in hot deformation. The modified five-parameter Voce-type equation described well the stress-strain curves, but, for the present alloy, it was also possible with only four parameters. A new two-variables polynomial function was employed on the four parameters that described well the flow curves as a direct function of temperature and strain rate. It permitted the reduction in the number of parameters and had the predictive capacity for the flow stress at any temperature, strain, and strain rate in the investigated range. The crystallographic textures were similar at all temperatures, with an increase in intensity from 900 °C. The textures could be characterized by a double <100> and <111> fiber and a unique component of (001) <110>, the latter inherited from the initial hot-rolling texture. Viscoplastic polycrystal self-consistent deformation modeling reproduced the measured textures showing that dynamic recrystallization did not alter the development of the deformation texture, only increased its intensity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10671964 | PMC |
http://dx.doi.org/10.3390/ma16227116 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!