Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To assess the freeze-thaw (F-T) durability of coal gangue pervious concrete (CGPC) in different F-T cycle media (water, 3.5 wt% NaCl solution), experimental studies on 36 groups of cube specimens and 6 groups of prismatic specimens were carried out, with designed porosity, F-T cycling media, and F-T failure times as variables. The changes in apparent morphology, mass, compressive behavior, relative dynamic elastic modulus, and permeability coefficient have been analyzed in detail. To predict the compressive strength after F-T cycles, a GM (1,1) model based on the grey system theory was developed and further improved into a more accurate grey residual-Markov model. The results reported that the cement slurry and coal gangue aggregates (CGAs) on the specimen surface continued to fall off as F-T cycles increased, and, finally, the weak point was fractured. Meanwhile, the decrease in compressive behavior and relative dynamic elastic modulus was gentle in the early phase of F-T cycles, and they gradually became faster in the later stage, showing a parabolic downward trend. The permeability coefficient increased gradually. When F-T failure occurred, specimen mass dropped precipitously. The F-T failure of CGPC was more likely to occur in 3.5 wt% NaCl solution, and the F-T failure times of samples were 25 times earlier than that of water. This study lays the foundation for an engineering application and provides a basis for the large-scale utilization of CGPC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10672078 | PMC |
http://dx.doi.org/10.3390/ma16227104 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!