Study on the Influence of Magnesite Tailings on the Expansion and Mechanical Properties of Mortar.

Materials (Basel)

College of Materials, Science and Engineering, Nanjing Tech University, Nanjing 211800, China.

Published: November 2023

To reduce the mining of high-grade magnesite and solve the environmental pollution caused by magnesite tailings, magnesite tailings were used to produce MgO expansion agent (MEA), and a detailed study of its performance was carried out in this study. Firstly, the effects of different calcination times on the calcination products, the specific surface area, and the activity of MEA were analyzed. Then, the MEA produced by calcinating at 950 °C for 1 h was taken as the research object, and the effects of its content on the expansion performance, compressive strength, and flexural strength of the mortar were studied. The results showed that the decomposition of magnesite tailings after high-temperature calcination produced MEA, and the longer the calcination time, the lower the activity. The calcined tailings could compensate for the shrinkage of the mortar, and the expansion increased with the increase in curing temperature. What is more, when the content was less than 8%, the hydration of MEA filled the pores and improved the compactness, so the strength of the mortar increased with the increase in the expansion agent content. When the dosage was greater than 8%, excessive expansion increased the porosity, causing harmful expansion of the mortar and damaging its integrity, leading to a decrease in strength. Fly ash reduced the expansion of mortar, and after adding 30% fly ash, the expansion decreased by 20.0-36.1%, and the ability to suppress expansion decreased with the increase in curing temperature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10672274PMC
http://dx.doi.org/10.3390/ma16227082DOI Listing

Publication Analysis

Top Keywords

magnesite tailings
16
expansion
10
expansion agent
8
strength mortar
8
expansion increased
8
increased increase
8
increase curing
8
curing temperature
8
expansion mortar
8
fly ash
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!