This study presents the effect of the addition of 0.4 wt.% carbon black (CB) to polyamide 66 (PA66) containing 30 wt.% short glass fibers (GFs) on the behavior of composite thermal crystallization. Composites were studied by differential scanning calorimetry analysis (DSC) at different cooling rates using wide-angle X-ray scattering (WAXS) and scanning electron microscopy (SEM). This thermal crystallization study highlights the nucleation effect of GFs that promote PA66 crystallization by significantly increasing crystallization kinetics and rates. The activation energies (Eas) calculated by model-free (FWO; KAS) and model-fitting (Kissinger method and C-R method) approaches showed that the combination of both GF and CB decreases the activation energy with respect to neat PA66, meaning that the presence of both additives facilitates crystallization. The Coats-Redfern and Criado methods showed that the crystallization of neat PA66 and related composites follows the second-order reaction, i.e., the decelerated reaction, evidencing compatibility between GFs and the matrix.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10672216 | PMC |
http://dx.doi.org/10.3390/ma16227073 | DOI Listing |
Arch Biochem Biophys
January 2025
Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany.
4-Phenol oxidases are proposed to be involved in the utilization of lignin-derived aromatic compounds. While enzymes with selectivity towards 4-hydroxyphenyl and guaiacyl motifs are well described, we identified the first syringyl-specific oxidase from Streptomyces cavernae (Sc4ASO) only very recently. Here, in-depth studies were conducted to unravel the molecular origins of the outstanding selectivity of Sc4ASO.
View Article and Find Full Text PDFBiochem J
January 2025
North Carolina State University, Raleigh, North Carolina, United States.
CtfAB from the extremely thermophilic bacterium, Thermosipho melanesiensis, has been used for in vivo acetone production up to 70°C. This enzyme has tentatively been identified as the rate-limiting step, due to its relatively low binding affinity for acetate. However, existing kinetic and mechanistic studies on this enzyme are insufficient to evaluate this hypothesis.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nanjing Tech University, College of Chemical Engineering, Nanjing, CHINA.
The wide application of zeolite Y in petrochemical industry is well known as one of the milestones in zeolite chemistry and heterogeneous catalysis. However, the traditional organic-free synthesis typically produces (hydro)thermally unstable zeolite Y with Si/Al atomic ratio (SAR) less than 2.5.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Business, Xi'an University of Finance and Economics, Xi'an, 710100, China.
The purpose of this study is to solve the problem of ammonia (NH) release when modified magnesium slag (MMS) is used as coal mine backfill cementitious material, and to explore its chemical mechanism and put forward effective solutions. Uniaxial compressive strengths (UCS) hydration kinetics, scanning electron microscope (SEM), and thermogravimetric analysis-derivative thermogravimetry (TG-DTG), X-ray diffractometer (XRD) and other testing methods were used to study the evolution of the properties of MMS-based backfill material, which provided a scientific basis for the safe utilization of MMS. First, the chemical mechanism underlying the release of NH from MMS was identified, and it was confirmed that MgN and LiN are the main nitrogen sources.
View Article and Find Full Text PDFJ Mol Model
January 2025
Processes, Materials and Environment Laboratory (LPME), Faculty of Sciences and Technology of Fez, Sidi Mohamed Ben Abdellah University, B.P. 2202, Fez, Morocco.
Context: Natural fluorapatite (FAP) has been investigated as an adsorbent for the removal of dyes such as methylene blue (MB) and crystal violet (CV) from aqueous solutions. Effective dye removal is crucial for water treatment, particularly for industrial wastewater containing toxic dyes. FAP, a naturally abundant material, was characterized using XRD, FTIR, and SEM analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!