Platinum-based thin films are widely used to create microelectronic devices operating at temperatures above 500 °C. One of the most effective ways to increase the high-temperature stability of platinum-based films involves incorporating refractory metal oxides (e.g., ZrO, HfO). In such structures, refractory oxide is located along the metal grain boundaries and hinders the mobility of Pt atoms. However, the effect of annealing conditions on the morphology and functional properties of such multiphase systems is rarely studied. Here, we show that the two-step annealing of 250-nm-thick Pt-Rh/Zr multilayer films instead of the widely used isothermal annealing leads to a more uniform film morphology without voids and hillocks. The composition and morphology of as-deposited and annealed films were investigated using X-ray diffraction and scanning electron microscopy, combined with energy-dispersive X-ray spectroscopy. At the first annealing step at 450 °C, zirconium oxidation was observed. The second high-temperature annealing at 800-1000 °C resulted in the recrystallization of the Pt-Rh alloy. In comparison to the one-step annealing of Pt-Rh and Pt-Rh/Zr films, after two-step annealing, the metal phase in the Pt-Rh/Zr films has a smaller grain size and a less pronounced texture in the <111> direction, manifesting enhanced high-temperature stability. After two-step annealing at 450/900 °C, the Pt-Rh/Zr thin film possessed a grain size of 60 ± 27 nm and a resistivity of 17 × 10 Ω·m. The proposed annealing protocol can be used to create thin-film MEMS devices for operation at elevated temperatures, e.g., microheater-based gas sensors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673003PMC
http://dx.doi.org/10.3390/mi14112003DOI Listing

Publication Analysis

Top Keywords

two-step annealing
16
pt-rh/zr films
12
annealing
10
high-temperature stability
8
grain size
8
films
7
pt-rh/zr
5
high-temperature
4
high-temperature mems
4
two-step
4

Similar Publications

Optimization of CZTSe Thin Films Using Sequential Annealing in Selenium and Tin-Selenium Environments.

Inorg Chem

December 2024

Laboratory of Complex Heterostructures and Multifunctional Materials, National Institute of Materials Physics, Atomistilor 405A, Magurele 077125, Romania.

CuZnSnSe (CZTSe) is a promising material for thin-film solar cells due to its suitable band gap, high absorption coefficient, and composition of earth-abundant and nontoxic elements. In this study, we prepared CZTSe thin films from Cu/SnSe and ZnSe stacks using a two-step annealing process. Initially, Cu-Sn-Se (CTSe) films were synthesized by sequential deposition and annealing of Cu and SnSe precursors in either a selenium (Se) or tin-selenium (Sn+Se) atmosphere.

View Article and Find Full Text PDF

Rapid Flame Synthesis of Highly Efficient CuO-CuBiO Heterojunction Photocathode for Improved Charge Separation and Light Capture Efficiency.

ACS Appl Mater Interfaces

December 2024

Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China.

The rapid flame annealing (FA) method has the advantages of convenience and rapidity with an instantaneous temperature rise and fall process. In this work, the influence of flame annealing duration on the front side and back side of CuBiO-based photocathodes was investigated, and photoelectrodes with variable compositions were obtained. A highly efficient CuO@CuO/CuBiO photoelectrode was successfully obtained via a two-step FA method within a few seconds.

View Article and Find Full Text PDF

Pyrazole-Mediated On-Surface Synthesis of Nickel/Nickel Oxide Hybrids for Efficient Urea-Assisted Hydrogen Production.

Nano Lett

December 2024

Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200438, China.

Creating densely functionalized supported materials without aggregation has been one of the ultimate goals for heterogeneous catalysts. Direct conversion of readily available bulk materials into highly dispersed supported materials could be highly beneficial for real applications. In this work, we invented an on-surface synthetic strategy for generating highly loaded and well-dispersed nickel nanoparticles on nickel oxide supports (Ni/NiO).

View Article and Find Full Text PDF

An annealing approach to form a nanotube from graphdiyne ribbon: a theoretical prediction.

Phys Chem Chem Phys

November 2024

Institute of Advanced Interdisciplinary Technology, Shenzhen MSU-BIT University, Shenzhen 518172, China.

A precisely controllable heat treatment process is critical for nanofabrication. We developed a two-step method to fabricate a graphdiyne nanotube (GNT) through heat treatment in an argon environment. Initially, we placed a carbon nanotube (CNT) near a rectangular graphdiyne nanoribbon (GNR) to trigger the self-scrolling of the ribbon.

View Article and Find Full Text PDF

With a high theoretical capacity, the MnS anode, however, exhibits a rather complex sodium diffusion kinetics and poor mechanical stability that hinder its application in sodium-ion batteries (SIBs). In this work, a simple, economical, and scalable strategy is developed to inherently coat nanoporous MnS with a 3D N, S co-doped thin carbon layer by using commercially available MnCO as precursors. Specifically, the strategy involves a two-step annealing process, which converts the MnCO microparticles into nanoporous MnO and MnS step by step.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!