The miniaturization of quantum sensors is a popular trend for the development of quantum technology. One of the key components of these sensors is a coil which is used for spin modulation and manipulation. The bi-planar coils have the advantage of producing three-dimensional magnetic fields with only two planes of current confinement, whereas the traditional Helmholtz coils require three-dimensional current distribution. Thus, the bi-planar coils are compatible with the current micro-fabrication process and are quite suitable for the compact design of the chip-scale atomic devices that require stable or modulated magnetic fields. This paper presents a design of a miniature bi-planar coil. Both the magnetic fields produced by the coils and their inhomogeneities were designed theoretically. The magnetic field gradient is a crucial parameter for the coils, especially for generating magnetic fields in very small areas. We used a NMR (Nuclear Magnetic Resonance) method based on the relaxation of 131Xe nuclear spins to measure the magnetic field gradient in situ. This is the first time that the field inhomogeneities of the field of such small bi-planar coils have been measured. Our results indicate that the designed gradient caused error is 0.08 for the By and the Bx coils, and the measured gradient caused error using the nuclear spin relaxation method is 0.09±0.02, suggesting that our method is suitable for measuring gradients. Due to the poor sensitivity of our magnetometer under a large Bz bias field, we could not measure the Bz magnetic field gradient. Our method also helps to improve the gradients of the miniature bi-planar coil design, which is critical for chip-scale atomic devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673043 | PMC |
http://dx.doi.org/10.3390/mi14111985 | DOI Listing |
ACS Sens
January 2025
CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
Flexible pressure sensors are pivotal in advancing artificial intelligence, the Internet of Things (IoT), and wearable technologies. While microstructuring the functional layer of these sensors effectively enhances their performance, current fabrication methods often require complex equipment and time-consuming processes. Herein, we present a novel magnetization-induced self-assembly method to develop a magnetically grown microneedle array as a dielectric layer for flexible capacitive pressure sensors.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, Saitama Medical University, Saitama, Japan.
Purpose: This study evaluates the effect of 6° horizontal gaze tolerance on visual field mean sensitivity (MS) in patients with glaucoma using a binocular head-mounted automated perimeter, following findings of structural changes in the posterior globe from magnetic resonance imaging and optical coherence tomography.
Methods: In this cross-sectional study, a total of 161 eyes (85 primary open-angle glaucoma [POAG] and 76 healthy) from 117 participants were included. Logistic regression and 1:1 matched analysis assessed the propensity score for glaucoma and healthy eyes, considering age, sex, and axial length as confounders.
Chemistry
January 2025
University of Sussex, Department of Chemistry, School of Life Sciences, BN1 9QJ, Brighton, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
The synthesis, structures and magnetic properties of an η5-silole complex and an η5-stannole complex of erbium are reported. The sandwich complex anions [(η5-CpSi)Er(η8-COT)]- and [(η5-CpSn)Er(η8-COT)]-, where CpSi is [SiC4-2,5-(SiMe3)2-3,4-Ph2]2- (1Si), CpSn is [SnC4-2,5-(SiMe3)2-3,4-Me2]2- (1Sn) and COT = cyclo-octatetraenyl, were obtained as their [K(2.2.
View Article and Find Full Text PDFDigit Health
January 2025
Department of Urology, General Hospital of Northern Theater Command, Shenyang, China.
Purpose: Prostate cancer (PCa) is the second most common cancer in males worldwide, requiring improvements in diagnostic imaging to identify and treat it at an early stage. Bi-parametric magnetic resonance imaging (bpMRI) is recognized as an essential diagnostic technique for PCa, providing shorter acquisition times and cost-effectiveness. Nevertheless, accurate diagnosis using bpMRI images is difficult due to the inconspicuous and diverse characteristics of malignant tumors and the intricate structure of the prostate gland.
View Article and Find Full Text PDFMater Today Bio
February 2025
Anhui University of Chinese Medicine, Hefei, 230012, China.
The therapeutic effect of immune checkpoint inhibitors (ICIs) in triple-negative breast cancer (TNBC) is unsatisfactory. The immune "cold" microenvironment caused by tumor-associated fibroblasts (TAFs) has an adverse effect on the antitumor response. Therefore, in this study, mixed cell membrane-coated porous magnetic nanoparticles (PMNPs) were constructed to deliver salvianolic acid B (SAB) to induce an antitumor immune response, facilitating the transition from a "cold" to a "hot" tumor and ultimately enhancing the therapeutic efficacy of immune checkpoint inhibitors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!