A nanosecond laser is used to fabricate groove-patterned textures on the upper surface of Ti-6Al-4V alloys, and then molybdic sulfide solid lubricants are filled into the grooves. The treated titanium alloy is subjected to friction and wear tests. The tribological performances of Ti-6Al-4V alloys are evaluated, and the wearing mechanism is analyzed. The combination of solid lubricants and surface texturing can effectively reduce the frictional coefficient and reduce the adhesion of Ti-6Al-4V materials on the steel balls for friction. The main wearing mechanism is the adhesive wear of the Ti-6Al-4V alloy and the adhesion of Ti-6Al-4V alloy materials on the surface of the steel balls. During the friction process, solid lubricants are squeezed from the grooves and coated at the friction interface to form a solid lubrication layer. This is the important reason why the combination of surface texturing and solid lubricants can improve the friction properties of titanium alloys effectively. The combination of solid lubricants and laser surface texturing provides an effective alternative way to improve the tribological properties of titanium alloy materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673546PMC
http://dx.doi.org/10.3390/mi14111978DOI Listing

Publication Analysis

Top Keywords

solid lubricants
24
ti-6al-4v alloys
12
steel balls
12
surface texturing
12
tribological properties
8
titanium alloy
8
wearing mechanism
8
combination solid
8
adhesion ti-6al-4v
8
balls friction
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!