The gastric pathogen, bacteria have to swim across a pH gradient from 2 to 7 in the mucus layer to colonize the gastric epithelium. Previous studies from our group have shown that porcine gastric mucin (PGM) gels at an acidic pH < 4, and bacteria are unable to swim in the gel, although their flagella rotate. Changing pH impacts both the rheological properties of gastric mucin and also influences the proton (H+)-pumped flagellar motors of as well as their anti-pH sensing receptors. To unravel these intertwined effects of acidic pH on both the viscoelastic properties of the mucin-based mucus as well as the flagellar motors and chemo-receptors of the bacterium, we compared the motility of in PGM with that in Brucella broth (BB10) at different pH values using phase contrast microscopy to track the motion of the bacteria. The results show that the distribution of swimming speeds and other characteristics of the bacteria trajectories exhibit pH-dependent differences in both media. The swimming speed exhibits a peak at pH 4 in BB10, and a less pronounced peak at a higher pH of 5 in PGM. At all pH values, the bacteria swam faster and had a longer net displacement in BB10 compared to PGM. While the bacteria were stuck in PGM gels at pH < 4, they swam at these acidic pH values in BB10, although with reduced speed. Decreasing pH leads to a decreased fraction of motile bacteria, with a decreased contribution of the faster swimmers to the distributions of speeds and net displacement of trajectories. The body rotation rate is weakly dependent on pH in BB10, whereas in PGM bacteria that are immobilized in the low pH gel are capable of mechano-sensing and rotate faster. Bacteria can be stuck in the gel in various ways, including the flagella getting entangled in the fibers of the gel or the cell body being stuck to the gel. Our results show that in BB10, swimming is optimized at pH4, reflecting the combined effects of pH sensing by anti-pH tactic receptors and impact on H+ pumping of flagellar motors, while the increase in viscosity of PGM with decreasing pH and gelation below pH 4 lead to further reduction in swimming speed, with optimal swimming at pH 5 and immobilization of bacteria below pH 4.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673263 | PMC |
http://dx.doi.org/10.3390/microorganisms11112745 | DOI Listing |
Int J Food Microbiol
January 2025
College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China. Electronic address:
Proc Natl Acad Sci U S A
January 2025
Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China.
Rotation of the bacterial flagellum, the first identified biological rotary machine, is driven by its stator units. Knowledge gained about the function of stator units has increasingly led to studies of rotary complexes in different cellular pathways. Here, we report that a tetrameric PilZ family protein, FlgX, is a structural component underneath the stator units in the flagellar motor of .
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan.
Many bacteria swim in liquid or swarm on surface using the flagellum rotated by a motor driven by specific ion flow. The motor consists of the rotor and stator, and the stator converts the energy of ion flow to mechanical rotation. However, the ion pathway and the mechanism of stator rotation coupled with specific ion flow are still obscure.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Microbiology, University of Georgia, Athens, Georgia, United States of America.
The Helicobacter pylori flagellar motor contains several accessory structures that are not found in the archetypal Escherichia coli and Salmonella enterica motors. H. pylori hp0838 encodes a previously uncharacterized lipoprotein and is in an operon with flgP, which encodes a motor accessory protein.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Microbial Sciences Institute, Yale University, West Haven, Connecticut, United States of America.
Spirochetes are a widely existing group of bacteria with a distinct morphology. Some spirochetes are important human pathogens that utilize periplasmic flagella to achieve motility and host infection. The motors that drive the rotation of periplasmic flagella have a unique spirochete-specific feature, termed the collar, crucial for the flat-wave morphology and motility of the Lyme disease spirochete Borrelia burgdorferi.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!