The prompt and accurate identification of the etiological agents of viral respiratory infections is a critical measure in mitigating outbreaks. In this study, we developed and clinically evaluated a novel melting-curve-based multiplex real-time PCR (M-m-qPCR) assay targeting the RNA-dependent RNA polymerase (RdRp) and nucleocapsid phosphoprotein N of SARS-CoV-2, the Matrix protein 2 of the Influenza A virus, the RdRp domain of the L protein from the Human Respiratory Syncytial Virus, and the polyprotein from Rhinovirus B genes. The analytical performance of the M-m-qPCR underwent assessment using in silico analysis and a panel of reference and clinical strains, encompassing viral, bacterial, and fungal pathogens, exhibiting 100% specificity. Moreover, the assay showed a detection limit of 10 copies per reaction for all targeted pathogens using the positive controls. To validate its applicability, the assay was further tested in simulated nasal fluid spiked with the viruses mentioned above, followed by validation on nasopharyngeal swabs collected from 811 individuals. Among them, 13.4% (109/811) tested positive for SARS-CoV-2, and 1.1% (9/811) tested positive for Influenza A. Notably, these results showed 100% concordance with those obtained using a commercial kit. Therefore, the M-m-qPCR exhibits great potential for the routine screening of these respiratory viral pathogens.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10672821 | PMC |
http://dx.doi.org/10.3390/microorganisms11112692 | DOI Listing |
Microorganisms
November 2023
Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!