N deposition is a key factor affecting the composition and function of soil microbial communities in wetland ecosystems. Previous studies mainly focused on the effects of N deposition in the soil during the growing season (summer and autumn). Here, we focused on the response of the soil microbial community structure and function in winter. Soil from the Sanjiang Plain wetland, China, that had been treated for the past 11 years by using artificial N deposition at three levels (no intervention in N0, N deposition with 4 g N m yr in N1, and with 8 g N m yr in N2). Soil characteristics were determined and the bacterial composition and function was characterized using high-throughput sequence technology. The N deposition significantly reduced the soil bacterial diversity detected in winter compared with the control N0, and it significantly changed the composition of the bacterial community. At the phylum level, the high N deposition (N2) increased the relative abundance of Acidobacteria and decreased that of Myxococcota and Gemmatimonadota compared with N0. In soil from N2, the relative abundance of the general and was significantly increased compared with N0. Soil pH, soil organic carbon (SOC), and total nitrogen (TN) were the key factors affecting the soil bacterial diversity and composition in winter. Soil pH was correlated with soil carbon cycling, probably due to its significant correlation with aerobic_chemoheterotrophy. The results show that a long-term N deposition reduces soil nutrients in winter wetlands and decreases soil bacterial diversity, resulting in a negative impact on the Sanjiang plain wetland. This study contributes to a better understanding of the winter responses of soil microbial community composition and function to the N deposition in temperate wetland ecosystems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673031 | PMC |
http://dx.doi.org/10.3390/microorganisms11112634 | DOI Listing |
J Agric Food Chem
January 2025
College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China.
Legumes are well-known for symbiotic nitrogen fixation, whereas associative nitrogen fixation for nonlegume plants needs more attention. Most associative nitrogen-fixing bacteria are applied in their original plant species and need further study for broad adaptation. Additionally, if isolated nitrogen-fixing bacteria could function under fertilizer conditions, it is often ignored.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Beijing Life Science Academy, Beijing, 102200, China.
Background: Fungal communities around plant roots play crucial roles in maintaining plant health. Nonetheless, the responses of fungal communities to bacterial wilt disease remain poorly understood. Here, the structure and function of fungal communities across four consecutive compartments (bulk soil, rhizosphere, rhizoplane and root endosphere) were investigated under the influence of bacterial wilt disease.
View Article and Find Full Text PDFSci Rep
January 2025
Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Berlin, Germany.
Agroforestry systems are multifunctional land-use systems that promote soil life. Despite their large potential spatio-temporal complexity, the majority of studies that investigated soil organisms in temperate cropland agroforestry systems focused on rather non-complex systems. Here, we investigated the topsoil and subsoil microbiome of two complex and innovative alley cropping systems: an agrosilvopastoral system combining poplar trees, crops, and livestock and a syntropic agroforestry system combining 35 tree and shrub species with forage crops.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand.
Xanthomonas oryzae pv. oryzae (Xoo) is a bacterial pathogen responsible for bacterial leaf blight (BLB) in rice, which can result in significant yield losses of up to 70%. A study evaluated the spread of Xoo in rice fields using environmental samples and employed colorimetric loop-mediated amplification (cLAMP) and PCR for detection.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23456, Sweden. Electronic address:
Nickel (Ni) is required in trace amounts (less than 500 µg kg) in plants to regulate metabolic processes, the immune system, and to act as an enzymatic catalytic cofactor. Conversely, when nickel is present in high concentration, it is considered as a toxic substance. Excessive human nickel exposure occurs through ingestion, inhalation, and skin contact, ultimately leading to respiratory, cardiovascular, and chronic kidney diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!