The widespread application of calcium carbonate is determined by its high availability in nature and simplicity of synthesis in laboratory conditions. Moreover, calcium carbonate possesses highly attractive physicochemical properties that make it suitable for a wide range of biomedical applications. This review provides a conclusive analysis of the results on using the tunable vaterite metastability in the development of biodegradable drug delivery systems and therapeutic vehicles with a controlled and sustained release of the incorporated cargo. This manuscript highlights the nuances of vaterite recrystallization to non-porous calcite, dissolution at acidic pH, biodegradation at in vivo conditions and control over these processes. This review outlines the main benefits of vaterite instability for the controlled liberation of the encapsulated molecules for the development of biodegradable natural and synthetic polymeric materials for biomedical purposes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674703 | PMC |
http://dx.doi.org/10.3390/pharmaceutics15112574 | DOI Listing |
Materials (Basel)
November 2024
School of Maritime and Civil Engineering, Zhejiang Ocean University, Zhoushan 316022, China.
This study aims to develop the marine geo-polymer cement that was produced with seawater, recycled particles from paste, recycled particles from glass, and alkaline activators, including NaOH or NaO·3.3SiO. The physicochemical properties and strength of MGPC were investigated with a Uniaxial Compression Test, Particle Size Analysis, Energy Dispersive Spectrometer, X-ray Diffraction, and Thermal-field Emission Scanning Electron Microscopy.
View Article and Find Full Text PDFWater Res
January 2025
Delft University of Technology, Faculty of Civil Engineering and Geosciences, Department of Water Management, PO Box 5048, 2600, GA, Delft, the Netherlands; Waternet, PO Box 94370, 1090, GJ, the Netherlands; Queen Mary University of London, School of Engineering and Materials Science, Division of Chemical Engineering, Centre for Sustainable Engineering, Mile End Road E1 4NS, London, United Kingdom. Electronic address:
Drinking water softening has primarily prioritized public health, environmental benefits, social costs and enhanced client comfort. Annually, over 35 billion cubic meters of water is softened worldwide, often utilizing three main techniques: nanofiltration, ion exchange and seeded crystallization by pellet softening. However, recent modifications in pellet softening, including changes in seeding materials and acid conditioning used post-softening, have not fully achieved desired flexibility and optimization.
View Article and Find Full Text PDFJ Agric Food Chem
November 2024
National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
J Environ Manage
December 2024
College of Safety and Environmental Engineering, Shandong University of Science and Technology, No. 579, Qianwangang Road, Qingdao, Shandong, China.
Widespread mining of open-pit coal mines has led to severe dust pollution, which degrades air quality and affects human health. Due to the drawbacks of existing dust suppression methods, there is an urgent need to develop a biological dust suppressant, which is based on urease-induced carbonate precipitation and has excellent potential for application in the field of dust management. The research developed a biological dust suppressant based on urease-induced carbonate precipitation technology.
View Article and Find Full Text PDFSci Rep
October 2024
Research Unit in Structural and Foundation Engineering, Department of Civil Engineering, Faculty of Engineering, Thammasat School of Engineering, Thammasat University, Pathum Thani, 12120, Thailand.
This research aimed to examine the effects of an acidic environment on the mechanical properties and durability of bio-mortar (BM) encapsulated with Bacillus subtilis bacteria, in comparison to normal mortar (NM). The results at 28 days indicated that both 3% and 6% HCl significantly increased the compressive strength of the BM by 25% and 50%, respectively, compared with that of the NM. However, when 11% HCl was introduced, the compressive strength of the BM decreased to 50% lower than that of the NM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!