The 3 31 Nucleotide Minihelix tRNA Evolution Theorem and the Origin of Life.

Life (Basel)

Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.

Published: November 2023

There are no theorems (proven theories) in the biological sciences. We propose that the 3 31 nt minihelix tRNA evolution theorem be universally accepted as one. The 3 31 nt minihelix theorem completely describes the evolution of type I and type II tRNAs from ordered precursors (RNA repeats and inverted repeats). Despite the diversification of tRNAome sequences, statistical tests overwhelmingly support the theorem. Furthermore, the theorem relates the dominant pathway for the origin of life on Earth, specifically, how tRNAomes and the genetic code may have coevolved. Alternate models for tRNA evolution (i.e., 2 minihelix, convergent and accretion models) are falsified. In the context of the pre-life world, tRNA was a molecule that, via mutation, could modify anticodon sequences and teach itself to code. Based on the tRNA sequence, we relate the clearest history to date of the chemical evolution of life. From analysis of tRNA evolution, ribozyme-mediated RNA ligation was a primary driving force in the evolution of complexity during the pre-life-to-life transition. TRNA formed the core for the evolution of living systems on Earth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10672568PMC
http://dx.doi.org/10.3390/life13112224DOI Listing

Publication Analysis

Top Keywords

trna evolution
16
minihelix trna
8
evolution
8
evolution theorem
8
origin life
8
trna
7
theorem
5
nucleotide minihelix
4
theorem origin
4
life theorems
4

Similar Publications

Comprehensive analysis of the multi-rings mitochondrial genome of Populus tomentosa.

BMC Genomics

January 2025

State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.

Background: Populus tomentosa, known as Chinese white poplar, is indigenous and distributed across large areas of China, where it plays multiple important roles in forestry, agriculture, conservation, and urban horticulture. However, limited accessibility to the mitochondrial (mt) genome of P. tomentosa impedes phylogenetic and population genetic analyses and restricts functional gene research in Salicaceae family.

View Article and Find Full Text PDF

Cellulolytic flagellates are essential for the symbiotic digestion of lignocellulose in the gut of lower termites. Most species are associated with host-specific consortia of bacterial symbionts from various phyla. 16S rRNA-based diversity studies and taxon-specific fluorescence in situ hybridization revealed a termite-specific clade of Actinomycetales that colonise the cytoplasm of Trichonympha spp.

View Article and Find Full Text PDF

(Cucurbitaceae) is an endemic species native to the Shennongjia forestry district of China, whose plastid genome was reported in this study. The whole genome exhibits the typical quadripartite structure with 156,906 bp in size. A total of 130 genes were identified, containing 85 protein-coding genes (CDS), 37 tRNA, and 8 rRNA genes.

View Article and Find Full Text PDF

(Compositae) is a perennial herbaceous plant owning high economic, feeding and medicinal values. It is widely distributed in desertification and saline alkali areas. The complete chloroplast genome was firstly reported in this study.

View Article and Find Full Text PDF

Using next-generation sequencing data, the complete mitogenomes of six species from the genus were assembled. This study explores the mitochondrial genomes of species, among them the five species from the complex, comparing them with each other and with other species from Dolichoderinae subfamily to understand their evolutionary relationships and evolution. mitochondrial genomes contain the typical set of 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNAs, and the A + T-rich control region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!