Effective disinfection procedures in healthcare facilities are essential to prevent transmission. Chemical disinfectants, hydrogen peroxide vapour (HPV) systems and ultraviolet (UV) light are commonly used methods. An emerging method, violet-blue light at 405 nm, has shown promise for surface disinfection. Its antimicrobial properties are based on producing reactive oxygen species (ROS) that lead to the inactivation of pathogens. Studies have shown significant efficacy in reducing bacterial levels on surfaces and in the air, reducing nosocomial infections. The aim of this study was to evaluate the antimicrobial effectiveness of violet-blue (405 nm) LED lamps on high-contact surfaces in a hospital infection-control laboratory. High-contact surfaces were sampled before and after 7 days of exposure to violet-blue light. In addition, the effect of violet-blue light on MRSA-contaminated surfaces was investigated. Exposure to violet-blue light significantly reduced the number of bacteria, yeasts and moulds on the sampled surfaces. The incubator handle showed a low microbial load and no growth after irradiation. The worktable and sink showed an inconsistent reduction due to shaded areas. In the second experiment, violet-blue light significantly reduced the microbial load of MRSA on surfaces, with a greater reduction on steel surfaces than on plastic surfaces. Violet-blue light at 405 nm has proven to be an effective tool for pathogen inactivation in healthcare settings Violet-blue light shows promise as an additional and integrated tool to reduce microbial contamination in hospital environments but must be used in combination with standard cleaning practices and infection control protocols. Further research is needed to optimise the violet-blue, 405 nm disinfection method.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674356 | PMC |
http://dx.doi.org/10.3390/pathogens12111338 | DOI Listing |
Light Sci Appl
January 2025
Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR, China.
Low-dimensional lead-free metal halide perovskites are highly attractive for cutting-edge optoelectronic applications. Herein, we report a class of scandium-based double perovskite crystals comprising antimony dopants that can generate multiexcitonic emissions in the ultraviolet, blue, and yellow spectral regions. Owing to the zero-dimensional nature of the crystal lattice that minimizes energy crosstalk, different excitonic states in the crystals can be selectively excited by ultraviolet light, X-ray irradiation, and mechanical action, enabling dynamic control of steady/transient-state spectral features by modulating the excitation modes.
View Article and Find Full Text PDFSci Rep
December 2024
Division of Blood Components and Devices, Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, 20993, USA.
Added safety measures coupled with the development and use of pathogen reduction technologies (PRT) significantly reduces the risk of transfusion-transmitted infections (TTIs) from blood products. Current approved PRTs utilize chemical and/or UV-light based inactivation methods. While the effectiveness of these PRTs in reducing pathogens are well documented, these can cause tolerable yet unintended consequences on the quality and efficacy of the transfusion products.
View Article and Find Full Text PDFLuminescence
December 2024
Department of Physics, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India.
YSiO:Ce, YSiO:Dy, and YSiO:Ce and Dy phosphors were successfully synthesized using the oxalate wet chemical method. Phase purity, emission and excitation spectra, FTIR, and the chromaticity coordinate were adopted to represent the performance of the samples. The photoluminescence (PL) spectrum YSiO:Ce and Dy phosphor shows a broadband in violet-blue region with a bandwidth of nearly 75 nm due to combine effect of Ce-Dy ions with another emission peaks of Dy ions peaking at 574 nm.
View Article and Find Full Text PDFAquac Nutr
July 2024
Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, Zhejiang, China.
The razor clam , a commercially important and nutritionally valuable bivalve species, has been found to display notable responses to different light spectra. While previous research has highlighted the influence of light spectra on the growth, feeding rate, and various physiological characteristics of , its impact on the biochemical composition of this species remains unclear. Herein, we investigated the proximate, fatty acid, and amino acid compositions of cultured under various light spectra, including white, violet, blue, cyan, green, yellow, red, and darkness.
View Article and Find Full Text PDFFront Public Health
November 2024
Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!