AI Article Synopsis

  • Insulin resistance leads to problems with glucose metabolism, which negatively affects ovarian health, but there’s limited research on how glucose affects ovaries.
  • This study aimed to explore how PD-MSCs influence glucose metabolism via the IGFBP2-AMPK signaling pathway and its connection to ovarian function using a rat model with induced injury.
  • Results showed that PD-MSCs significantly boosted the expression of glucose metabolism-related genes and improved ovarian markers and hormone levels, suggesting that IGFBP2 plays a crucial role in enhancing both glucose metabolism and ovarian function.

Article Abstract

The insulin resistance caused by impaired glucose metabolism induces ovarian dysfunction due to the central importance of glucose as a source of energy. However, the research on glucose metabolism in the ovaries is still lacking. The objectives of this study were to analyze the effect of PD-MSCs on glucose metabolism through IGFBP2-AMPK signaling and to investigate the correlation between glucose metabolism and ovarian function. Thioacetamide (TAA) was used to construct a rat injury model. PD-MSCs were transplanted into the tail vein (2 × 10) 8 weeks after the experiment started. The expression of the IGFBP2 gene and glucose metabolism factors (e.g., AMPK, GLUT4) was significantly increased in the PD-MSC group compared to the nontransplantation (NTx) group (* < 0.05). The levels of follicular development markers and the sex hormones AMH, FSH, and E2 were also higher than those in the TAA group. Using ex vivo cocultivation, the mRNA and protein expression of IGFBP2, AMPK, and GLUT4 were significantly increased in the cocultivation with the PD-MSCs group and the recombinant protein-treated group (* < 0.05). These findings suggest that the increased IGFBP2 levels by PD-MSCs play an important role in glucose metabolism and ovarian function through the IGFBP2-AMPK signaling pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10671765PMC
http://dx.doi.org/10.3390/ijms242216531DOI Listing

Publication Analysis

Top Keywords

glucose metabolism
28
increased igfbp2
8
igfbp2 levels
8
glucose
8
signaling pathway
8
igfbp2-ampk signaling
8
metabolism ovarian
8
ovarian function
8
expression igfbp2
8
ampk glut4
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!