Osteosarcoma (OSA) is a highly aggressive bone tumor primarily affecting pediatric or adolescent humans and large-breed dogs. Canine OSA shares striking similarities with its human counterpart, making it an invaluable translational model for uncovering the disease's complexities and developing novel therapeutic strategies. Tumor heterogeneity, a hallmark of OSA, poses significant challenges to effective treatment due to the evolution of diverse cell populations that influence tumor growth, metastasis, and resistance to therapies. In this study, we apply single-nuclei multiome sequencing, encompassing ATAC (Assay for Transposase-Accessible Chromatin) and GEX (Gene Expression, or RNA) sequencing, to a treatment-naïve primary canine osteosarcoma. This comprehensive approach reveals the complexity of the tumor microenvironment by simultaneously capturing the transcriptomic and epigenomic profiles within the same nucleus. Furthermore, these results are analyzed in conjunction with bulk RNA sequencing and differential analysis of the same tumor and patient-matched normal bone. By delving into the intricacies of OSA at this unprecedented level of detail, we aim to unravel the underlying mechanisms driving intra-tumoral heterogeneity, opening new avenues for therapeutic interventions in both human and canine patients. This study pioneers an approach that is broadly applicable, while demonstrating significant heterogeneity in the context of a single individual's tumor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10671194 | PMC |
http://dx.doi.org/10.3390/ijms242216365 | DOI Listing |
Res Sq
December 2024
Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
Medulloblastoma (MB) is the most prevalent malignant brain tumor in children, exhibiting clinical and genomic heterogeneity. Of the four major subgroups, Group 3 tumors (MYC-MB), display high levels of MYC and metastasis rates. Despite treatment with surgery, radiation, and chemotherapy, patients with Group 3 MB are more likely to develop aggressive recurrent tumors with poor survival.
View Article and Find Full Text PDFCell Syst
December 2024
Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Electronic address:
Single-cell CRISPR screens link genetic perturbations to transcriptional states, but high-throughput methods connecting these induced changes to their regulatory foundations are limited. Here, we introduce Multiome Perturb-seq, extending single-cell CRISPR screens to simultaneously measure perturbation-induced changes in gene expression and chromatin accessibility. We apply Multiome Perturb-seq in a CRISPRi screen of 13 chromatin remodelers in human RPE-1 cells, achieving efficient assignment of sgRNA identities to single nuclei via an improved method for capturing barcode transcripts from nuclear RNA.
View Article and Find Full Text PDFSample multiplexing is a common approach to reduce experimental cost and technical batch effect. Here, we present a protocol that for the first time allows the pooling of single nuclei from multiple biological samples prior to performing simultaneous single nuclei RNA-seq and ATAC-seq, which we term ltiplexed ltiome (MuMu). We describe steps for assembling the custom Tn5 transposome, performing the transposition reaction, nuclei pooling, sequencing library preparation, and sequencing data pre-processing.
View Article and Find Full Text PDFStructural and functional alterations in the brain's reward circuitry are present in cocaine use disorder (CocUD), but their molecular underpinnings remain unclear. To investigate these mechanisms, we performed single-nuclei multiome profiling on postmortem caudate nucleus tissue from six individuals with CocUD and eight controls. We profiled 31,178 nuclei, identifying 13 cell types including D1- and D2-medium spiny neurons (MSNs) and glial cells.
View Article and Find Full Text PDFbioRxiv
July 2024
Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Single-cell CRISPR screens link genetic perturbations to transcriptional states, but high-throughput methods connecting these induced changes to their regulatory foundations are limited. Here we introduce Multiome Perturb-seq, extending single-cell CRISPR screens to simultaneously measure perturbation-induced changes in gene expression and chromatin accessibility. We apply Multiome Perturb-seq in a CRISPRi screen of 13 chromatin remodelers in human RPE-1 cells, achieving efficient assignment of sgRNA identities to single nuclei via an improved method for capturing barcode transcripts from nuclear RNA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!