The Neurotransmission Basis of Post-Traumatic Stress Disorders by the Fear Conditioning Paradigm.

Int J Mol Sci

Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy.

Published: November 2023

Fear conditioning constitutes the best and most reproducible paradigm to study the neurobiological mechanisms underlying emotions. On the other hand, studies on the synaptic plasticity phenomena underlying fear conditioning present neural circuits enforcing this learning pattern related to post-traumatic stress disorder (PTSD). Notably, in both humans and the rodent model, fear conditioning and context rely on dependent neurocircuitry in the amygdala and prefrontal cortex, cingulate gyrus, and hippocampus. In this review, an overview of the role that classical neurotransmitters play in the contextual conditioning model of fear, and therefore in PTSD, was reported.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10671801PMC
http://dx.doi.org/10.3390/ijms242216327DOI Listing

Publication Analysis

Top Keywords

fear conditioning
16
post-traumatic stress
8
model fear
8
fear
5
conditioning
5
neurotransmission basis
4
basis post-traumatic
4
stress disorders
4
disorders fear
4
conditioning paradigm
4

Similar Publications

Imaginal exposure is a standard procedure of cognitive behavioral therapy for the treatment of anxiety and panic disorders. It is often used when in vivo exposure is not possible, too stressful for patients, or would be too expensive. The Bio-Informational Theory implies that imaginal exposure is effective because of the perceptual proximity of mental imagery to real events, whereas empirical findings suggest that propositional thought of fear stimuli (i.

View Article and Find Full Text PDF

Parvalbumin interneurons in the anterior cingulate cortex exhibit distinct processing patterns for fear and memory in rats.

Heliyon

January 2025

Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.

The anterior cingulate cortex is responsible for multiple cognitive functions like fear, pain management, decision-making, risk and reward assessment, and memory consolidation. However, its cell-type-specific functions are not clearly understood. To reveal the selective functional role of Parvalbumin-expressing GABAergic interneurons in the ACC, we knocked down (KD) the PV gene in-vivo in rats.

View Article and Find Full Text PDF

The power of belief? Evidence of reduced fear extinction learning in Catholic God believers.

Front Public Health

January 2025

Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università di Messina, Messina, Italy.

Religious beliefs can shape how people process fear. Yet the psychophysiological mechanisms underlying this phenomenon remain poorly understood. We investigated fear learning and extinction processes in a group of individuals who professed a belief in God, compared to non-believers.

View Article and Find Full Text PDF

Repetitive grooming behavior following aversive stimulus coincides with a decrease in anterior hypothalamic area activity.

eNeuro

January 2025

Neuronal Circuits and Behavior Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, U.S.A.

The anterior hypothalamic area (AHA) is a key brain region for orchestrating defensive behaviors. Using in vivo calcium imaging in mice, we observed that AHA neuronal activity increases during foot shock delivery and foot-shock associated auditory cues. We found that following shock-induced increases in AHA activity, a decrease in activity coincides with the onset of grooming behavior.

View Article and Find Full Text PDF

Vagus nerve stimulation rescues impaired fear extinction and social interaction in a rat model of autism spectrum disorder.

J Affect Disord

January 2025

Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA; Texas Biomedical Device Center (TxBDC), The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA. Electronic address:

Clinical diagnosis of anxiety disorders is highly prevalent in autism spectrum disorders (ASD). Available treatments for anxiety offer limited efficacy in the ASD population. Vagus nerve stimulation (VNS) has an anxiolytic effect in rats and, when coupled with fear extinction training, VNS enhances extinction of fear in healthy rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!